Journal of neurophysiology
-
After incomplete spinal cord injury (SCI), compensatory changes occur throughout the whole neuraxis, including the spinal cord below the lesion, as suggested by previous experiments using a dual SCI paradigm. Indeed, cats submitted to a lateral spinal hemisection at T10-T11 and trained on a treadmill for 3-14 wk re-expressed bilateral hindlimb locomotion as soon as 24 h after spinalization, a process that normally takes 2-3 wk when a complete spinalization is performed without a prior hemisection. In this study, we wanted to ascertain whether similar effects could occur spontaneously without training between the two SCIs and within a short period of 3 wk in 11 cats. ⋯ In these 9 cats, the hindlimb on the side of the previous hemisection (left hindlimb) performed better than the right side in contrast to that observed during the hemispinal period itself. Cats re-expressing the best bilateral hindlimb locomotion after spinalization had the largest initial hemilesion and the most prominent locomotor deficits after this first SCI. These results provide evidence that 1) marked reorganization of the spinal locomotor circuitry can occur without specific locomotor training and within a short period of 3 wk; 2) the spinal cord can reorganize in a more or less symmetrical way; and 3) the ability to walk after spinalization depends on the degree of deficits and adaptation observed in the hemispinal period.
-
Comparative Study
Postnatal maturation of the hyperpolarization-activated cation current, I(h), in trigeminal sensory neurons.
Hyperpolarization-activated inward currents (I(h)) contribute to neuronal excitability in sensory neurons. Four subtypes of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate I(h), with different activation kinetics and cAMP sensitivities. The aim of the present study was to examine the postnatal development of I(h) and HCN channel subunits in trigeminal ganglion (TG) neurons. ⋯ Western blot analysis of the TG detected immunoreactive bands corresponding to all HCN subtypes. HCN1 and HCN2 band density increased with postnatal age, whereas the low-intensity HCN3 and moderate-intensity HCN4 bands were not changed. This study suggests that functional I(h) are activated in rat trigeminal sensory neurons from P1 during postnatal development, have an increasing role with age, and modify neuronal excitability.