Journal of neurophysiology
-
Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. ⋯ A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists.
-
High-frequency conditioning electrical stimulation (HFS) of human skin induces an increased pain sensitivity to mechanical stimuli in the surrounding nonconditioned skin. The aim of this study was to investigate the effect of HFS on reported pain sensitivity to single electrical stimuli applied within the area of conditioning stimulation. We also investigated the central nervous system responsiveness to these electrical stimuli by measuring event-related potentials (ERPs). ⋯ In contrast, we observed enhanced ERP amplitudes after HFS at the conditioned skin site, compared with control site, in response to the single electrical test stimuli. Recently, it has been proposed that ERPs, at least partly, reflect a saliency detection system. Therefore, the enhanced ERPs might reflect enhanced saliency to potentially threatening stimuli.
-
The nucleus tractus solitarii (nTS) is the primary termination and integration point for visceral afferents in the brain stem. Afferent glutamate release and its efficacy on postsynaptic activity within this nucleus are modulated by additional neuromodulators and transmitters, including serotonin (5-HT) acting through its receptors. The 5-HT(2) receptors in the medulla modulate the cardiorespiratory system and autonomic reflexes, but the distribution of the 5-HT(2C) receptor and the role of these receptors during synaptic transmission in the nTS remain largely unknown. ⋯ Conversely, 5-HT(2C) receptor blockade reduced TS-EPSC and miniature EPSC amplitude, as well as input resistance, and hyperpolarized membrane potential. Synaptic parameters in nTS neurons that receive sensory input from carotid body chemoafferents were also attenuated by 5-HT(2C) receptor blockade. Taken together, these data suggest that 5-HT(2C) receptors in the nTS are located postsynaptically and augment excitatory neurotransmission.