Journal of neurophysiology
-
Optogenetic methods that utilize expression of the light-sensitive protein channelrhodopsin-2 (ChR2) in neurons have enabled selective activation of specific subtypes or groups of neurons to determine their functions. Using a transgenic mouse model in which neurons natively expressing Nav1.8 (a tetrodotoxin-resistant voltage-gated sodium channel) also express the light-gated channel ChR2, we have been able to determine the functional properties of Nav1.8-expressing cutaneous nociceptors of the glabrous skin in vivo. Most (44 of 53) of the C-fiber nociceptors isolated from Nav1.8-ChR2+ mice were found to be responsive to blue (470 nm) light. ⋯ NEW & NOTEWORTHY Transgenic mice that express the blue light-sensitive protein channelrhodopsin2 (ChR2) in nociceptive nerve fibers that contain voltage-gated sodium channel Nav1.8 were used to determine functional properties of these afferent fibers. Electrophysiological recordings in vivo revealed that most nociceptive fibers that possess Nav1.8 are C-fiber nociceptors that respond to multiple stimulus modalities. Furthermore, responses evoked by blue light stimulation were comparable to those elicited by noxious mechanical, heat, and cold stimuli.
-
In the vestibular periphery neurotransmission between hair cells and primary afferent nerves occurs via specialized ribbon synapses. Type I vestibular hair cells (HCIs) make synaptic contacts with calyx terminals, which enclose most of the HCI basolateral surface. To probe synaptic transmission, whole cell patch-clamp recordings were made from calyx afferent terminals isolated together with their mature HCIs from gerbil crista. ⋯ Our data support a role for L-type Ca2+ channels in spontaneous release and demonstrate regional variations in AMPA-mediated quantal transmission at the calyx synapse. NEW & NOTEWORTHY In vestibular calyx terminals of mature cristae we find that the majority of excitatory postsynaptic currents (EPSCs) are rapid monophasic events mediated by AMPA receptors. Spontaneous EPSCs are reduced by an L-type Ca2+ channel blocker and notably enhanced in extracellular Sr2+ EPSC frequency is greater in central areas of the crista compared with peripheral areas and may be associated with more numerous presynaptic ribbons in central hair cells.