Journal of neurophysiology
-
Migraine is a multifactorial brain disorder characterized by recurrent disabling headache attacks. One of the possible mechanisms in the pathogenesis of migraine may be a decrease in inhibitory cortical stimuli in the primary visual cortex attributable to cortical hyperexcitability. The aim of this study was to investigate the neural correlates underlying face and face pareidolia processing in terms of the event-related potential (ERP) components, N170, vertex positive potential (VPP), and N250, in patients with migraine. ⋯ NEW & NOTEWORTHY Event-related potentials (ERPs) are important for understanding face and face pareidolia processing in patients with migraine. N170, vertex positive potential (VPP), and N250 ERPs were investigated. N170 was revealed as a potential component of cortical excitability for face and face pareidolia processing in patients with migraine.
-
Medial and lateral entorhinal cortices convey spatial/contextual and item/object information to the hippocampus, respectively. Whether the distinct inputs are integrated as one cognitive map by hippocampal neurons to represent location and the objects therein, or whether they remain as parallel outputs, to be integrated in a downstream region, remains unclear. Principal, or complex spike bursting, neurons of hippocampus exhibit location-specific firing, and it is likely that the activity of "place cells" supports spatial memory/navigation in rodents. ⋯ Together, our results confirm the delay-dependent contribution of the CA1 region to object memory and suggest that object information is processed in parallel with the ongoing spatial mapping function that is a hallmark of hippocampal memory. NEW & NOTEWORTHY We developed variations of the object recognition task to examine the contribution of mouse CA1 neuronal activity to object memory and the degree to which object-context conjunctive representations are formed during object training. Our results indicate that, within the CA1 region, object information is processed in a parallel but delay-dependent manner, with ongoing spatial mapping.