Journal of neurophysiology
-
Hearing loss caused by noise exposure, ototoxic drugs, or aging results from the loss of sensory cells, as reflected in audiometric threshold elevation. Animal studies show that loss of hair cells can be preceded by loss of auditory-nerve peripheral synapses, which likely degrades auditory processing. While this condition, known as cochlear synaptopathy, can be diagnosed in mice by a reduction of suprathreshold cochlear neural responses, its diagnosis in humans remains challenging. ⋯ NEW & NOTEWORTHY Recent animal studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear that "hides" behind a normal audiogram. This study examines electrophysiological responses to clicks in a large cohort of subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with an important contribution cochlear neural damage to deficits in hearing in noise abilities.
-
Designer receptors exclusively activated by designer drugs (DREADDs) modify cellular activity following administration of the exogenous ligand clozapine-N-oxide (CNO). However, some reports indicate CNO may have off-target effects. The current studies investigate the use of Gq DREADDs in CaMKIIa-expressing neurons in the median preoptic nucleus (MnPO). ⋯ NEW & NOTEWORTHY Rats were injected in the median preoptic nucleus (MnPO) with either an adeno-associated virus (AAV) and excitatory (Gq) designer receptor exclusively activated by designer drugs (DREADD) construct or a control AAV. In the Gq DREADD-injected rats only, clozapine-N-oxide (CNO) increased Fos staining in the MnPO and its targets and increased neuron action potential frequency. In electrophysiology experiments with slices with DREADD cells, unlabeled cells were activated and this was likely due to nitric oxide release by the DREADD cells.