Journal of neurophysiology
-
Descending facilitatory circuitry that involves the rostroventromedial medulla (RVM) exerts a significant role in the development of antinociceptive tolerance and hyperalgesia following chronic morphine treatment. The role of the RVM in the development of antinociceptive tolerance to oxycodone, another clinically used strong opioid, is not yet known. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, attenuates opioid antinociceptive tolerance, but its effect on RVM cell discharge in opioid-tolerant animals is not known. ⋯ Chronic treatment with oxycodone as well as morphine can lead to analgesic tolerance and paradoxical hyperalgesia. Here we show that an N-methyl-d-aspartate receptor-dependent pronociceptive change in discharge properties of rostroventromedial medullary neurons controlling spinal nociception has an important role in antinociceptive tolerance to morphine but not oxycodone. Interestingly, chronic oxycodone did not induce pronociceptive changes in the rostroventromedial medulla.