Journal of neurophysiology
-
The contribution for the development of secondary mechanical hyperalgesia by peripheral mechanisms has not been fully elucidated. We have reevaluated the effects of local anesthetics on electrically evoked flare reaction and mechanical hyperalgesia in human skin. We applied 2% lidocaine via intradermal microdialysis fibers at a length of 10 cm for 110 min to the volar forearm to establish a narrow and stable "anesthetic strip." After 60 min of lidocaine perfusion, transdermal electrical stimulation (1 Hz, 50 mA) was applied at a distance of 1 cm from the microdialysis fibers for 30 min. ⋯ In contrast, allodynia (7.4 +/- 0.7 and 8.6 +/- 0.9 cm) and punctate hyperalgesia (7.6 +/- 0.7 and 8.6 +/- 0.9 cm) developed symmetrically on both sides of the anesthetic strip. Allodynia subsided 4 min after the end of the electrical stimulation. We conclude that the development of allodynia and punctate hyperalgesia in human skin is centrally mediated, whereas the axon reflex vasodilation is of peripheral origin.
-
When studied in vitro, type I hair cells in amniote vestibular organs have a large, negatively activating K+ conductance. In type II hair cells, as in nonvestibular hair cells, outwardly rectifying K+ conductances are smaller and more positively activating. As a result, type I cells have more negative resting potentials and smaller input resistances than do type II cells; large inward currents fail to depolarize type I cells above -60 mV. ⋯ The Ca2+ current included an L-type component with relatively low sensitivity to dihydropyridine antagonists, consistent with the alpha subunit being CaV1.3 (alpha1D). Rat vestibular epithelia and ganglia were probed for L-type alpha-subunit expression with the reverse transcription-polymerase chain reaction. The epithelia expressed CaV1.3 and the ganglia expressed CaV1.2 (alpha1C).
-
This study investigated the static and dynamic characteristics of the pupillary light reflex (PLR) in the alert rhesus monkey. Temporal characteristics of the PLR were investigated with Maxwellian viewing during sinusoidal changes in illumination of a 36 degrees stimulus in both monkeys and humans. Bode plots of the PLR response were fitted by a linear model composed of a delay combined with a cascaded first- and second-order filter. ⋯ These pupillomotor fields revealed that, as has been reported for humans, stimuli at the fovea and surrounding macular region of monkeys produce substantially larger pupillary responses than more peripheral stimuli and that binocular responses are substantially greater than can be accounted for by the linear summation of binocular retinal illuminance. In conclusion, we found that the spatial characteristics of the PLR of the rhesus monkey are very similar, in all important aspects, to those reported for humans and that the temporal responses of the PLR are comparable between the two species. The rhesus monkey thus provides an excellent model for experimental studies of the neural control of the pupil.
-
The location of the human nociceptive area(s) near the Sylvian fissure is still controversial in spite of evidence from imaging and evoked potential studies that noxious heat stimuli activate somatosensory areas in that region. Some studies have suggested the secondary somatosensory cortex (SII) on the upper bank of the Sylvian fissure posterior to the central sulcus, others the anterior insula or parietal area 7b. In this study, we applied dipole source analysis techniques to laser-evoked potentials (LEPs) that were recorded from subdural grid electrodes in three patients. ⋯ At the latency of the first GFP peak, source orientation pointed inward, suggesting a generator within the inner vertical surface of the operculum. Somatotopy was assessed in one patient and was consistent with that of the projection area of the presumed nociceptive thalamic nucleus posterior part of the ventromedial nucleus, but differed from that of SII. These findings suggest that the nociceptive area in human parasylvian cortex that is activated most rapidly by noxious heat pulses may be separate from the tactile SII area.
-
A fundamental question in vertebrate locomotion is whether distinct spinal networks exist that are capable of generating rhythmic output for each group of muscle synergists. In many vertebrates including the lamprey, it has been claimed that burst activity depends on reciprocal inhibition between antagonists. This question was addressed in the isolated lamprey spinal cord in which the left and right sides of each myotome display rhythmic alternating activity. ⋯ Ipsilateral glycinergic inhibition was not required for the hemicord burst pattern generation, suggesting that an interaction between excitatory glutamatergic neurons suffices to produce the unilateral burst pattern. In NMDA, burst activity at a much lower rate (0.1-0.4 Hz) was also encountered, which required the voltage-dependent properties of NMDA receptors in contrast to the fast rhythm. Swimming is thus produced by pairs of unilateral burst generating networks with reciprocal inhibitory connections that not only ensure left/right alternation but also downregulate frequency.