Journal of neurophysiology
-
This research was guided by the working hypothesis that the aging auditory system progressively loses its ability to process rapid acoustic transients efficiently, and in elderly listeners, this results in difficulties in speech perception. Neural correlates of age-related deficits in temporal processing were investigated by recording from inferior colliculus (IC) neurons from young adult and old CBA mice. Single-unit responses were recorded to sinusoidally amplitude-modulated (SAM) noise carriers, presented at 65-80 dB SPL, having modulation frequencies (MFs) that ranged from 10 to 800 Hz. ⋯ The magnitude of the differences between the young adult and the old spike median responses was greatest at low MFs and then declined as MF increased. Finally, the young adult distribution of rBMFs extends to higher MFs than the old, with 36.0% of units having rBMFs >100 Hz as compared with only 12.5% of the old unit sample. We postulate that this age-related difference in rate coding of SAM noise carriers is consistent with a loss, or imbalance, of excitatory and inhibitory neural mechanisms known to shape encoding of envelope periodicities in the IC.
-
We recorded spontaneous and evoked synaptic currents in pyramidal neurons of layer V in chronically injured, epileptogenic neocortex to assess changes in the efficacy of excitatory and inhibitory neurotransmission that might promote cortical hyperexcitability. Partial sensory-motor neocortical isolations with intact blood supply ("undercuts") were made in 20 rats on postnatal day 21-25 and examined 2-6 wk later in standard brain slice preparations using whole cell patch-clamp techniques. Age-matched, uninjured naive rats (n = 20) were used as controls. ⋯ In contrast, the N-methyl-D-aspartate receptor-mediated component of evoked EPSCs was not significantly different in neurons of injured versus control cortex, suggesting that the increased AMPA/KA component was due to postsynaptic alterations. Results support the conclusion that layer V pyramidal neurons receive increased AMPA/KA receptor-mediated excitatory synaptic drive and decreased GABA(A) receptor-mediated inhibition in this chronically injured, epileptogenic cortex. This shift in the balance of excitatory and inhibitory synaptic activation of layer V pyramidal cells toward excitation might be maladaptive and play a critical role in epileptogenesis.
-
Comparative Study
Constraints on the source of short-term motion adaptation in macaque area MT. I. the role of input and intrinsic mechanisms.
Neurons in area MT, a motion-sensitive area of extrastriate cortex, respond to a step of target velocity with a transient-sustained firing pattern. The transition from a high initial firing rate to a lower sustained rate occurs over a time course of 20-80 ms and is considered a form of short-term adaptation. The present paper asks whether adaptation is due to input-specific mechanisms such as short-term synaptic depression or if it results from intrinsic cellular mechanisms such as spike-rate adaptation. ⋯ Further, the transient was suppressed or extinguished, not delayed, in trials in which the neuron emitted zero spikes during the interval that showed a transient in average firing rate. We conclude that the transition from transient to sustained firing in neurons in area MT is caused by mechanisms that are neither input-specific nor controlled by the spiking of the adapting neuron. We propose that the short-term adaptation observed in area MT emerges from the intracortical circuit within MT.
-
Comparative Study
Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI.
The role of the somatosensory cortices (SI and SII) in pain perception has long been in dispute. Human imaging studies demonstrate activation of SI and SII associated with painful stimuli, but results have been variable, and the functional relevance of any such activation is uncertain. The present study addresses this issue by testing whether the time course of somatosensory activation, evoked by painful heat and nonpainful tactile stimuli, is sufficient to discriminate temporal differences that characterize the perception of these stimulus modalities. ⋯ This prolonged period of activation paralleled the perception of increasing pain intensity that persists even after stimulus offset. On the other hand, the temporal profile of the initial minor peak in pain-related activation closely matched that of the brush-evoked activity, suggesting a possible relationship to tactile components of the thermal stimulation procedure. These data indicate that both SI and SII cortices are involved in the processing of nociceptive information and are consistent with a role for these structures in the perception of temporal aspects of pain intensity.
-
Spaced training is generally more effective than massed training for learning and memory, but the molecular mechanisms underlying this trial spacing effect remain poorly characterized. One potential molecular basis for the trial spacing effect is the differential modulation, by distinct temporal patterns of neuronal activity, of protein synthesis-dependent processes that contribute to the expression of specific forms of synaptic plasticity in the mammalian brain. Long-term potentiation (LTP) is a type of synaptic modification that may be important for certain forms of memory storage in the mammalian brain. ⋯ Temporally spaced behavioral training improved long-term memory for contextual but not for cued fear conditioning, and this enhancement of memory for contextual fear was also protein synthesis dependent. Our data reveal that altering the temporal spacing of synaptic stimulation and behavioral training improved hippocampal LTP and enhanced contextual long-term memory. From a broad perspective, these results suggest that the recruitment of protein synthesis-dependent processes important for long-term memory and for long-lasting forms of LTP can be modulated by the temporal profiles of behavioral training and synaptic stimulation.