Journal of neurophysiology
-
The purpose of the present investigation was to examine, in the primate, the role of the postsynaptic dorsal column (PSDC) system and that of the spinothalamic tract (STT) in viscerosensory processing by comparing the responses of neurons in these pathways to colorectal distension (CRD). Experiments were done on four anesthetized male monkeys (Macaca fascicularis). Extracellular recordings were made from a total of 100 neurons randomly located in the L(6)-S(1) segments of the spinal cord. ⋯ Of the unidentified neurons, 23 were excited by CRD, 7 were inhibited, and 5 did not respond. The average responses of STT and PSDC neurons excited by CRD were comparable in magnitude and duration. These results suggest that the major role of the PSDC pathway in viscerosensory processing may be due to a quantitative rather than a qualitative neuronal dominance over the STT.
-
The role of dendritic voltage-gated ion channels in the generation of action potential bursting was investigated using whole cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons located in hippocampal slices of adult rats. Under control conditions somatic current injections evoked single action potentials that were associated with an afterhyperpolarization (AHP). After localized application of 4-aminopyridine (4-AP) to the distal apical dendritic arborization, the same current injections resulted in the generation of an afterdepolarization (ADP) and multiple action potentials. ⋯ This suggest that the Ni-sensitive voltage-gated Ca(2+) channels have the most important role in action potential burst generation. In summary, these data suggest that the activation of dendritic voltage-gated Ca(2+) channels, by large-amplitude backpropagating spikes, provides a prolonged inward current that is capable of generating an ADP and burst of multiple action potentials in the soma of CA1 pyramidal neurons. Dendritic voltage-gated ion channels profoundly regulate the processing and storage of incoming information in CA1 pyramidal neurons by modulating the action potential firing mode from single spiking to burst firing.
-
Response properties of neurons in the inferior colliculus (IC) were examined in control and profoundly deafened animals to electrical stimulation of the auditory nerve. Seven adult cats were used: two controls; four neonatally deafened (2 bilaterally, 2 unilaterally); and one long-term bilaterally deaf cat. All control cochleae were deafened immediately before recording to avoid electrophonic activation of hair cells. ⋯ It would appear that monaural afferent input is sufficient to maintain normal levels of temporal resolution in auditory midbrain neurons. These experiments have shown that many of the basic response properties are similar across animals with a wide range of auditory experience. However, important differences were identified, including increased response latencies and temporal jitter, and reduced levels of temporal resolution.
-
Studies at spinal levels indicate that peripheral tissue or nerve injury induces a state of hyperexcitability of spinal dorsal horn neurons that participates in the development of persistent pain and hyperalgesia. It has not been demonstrated that persistent injury in the orofacial region leads to a similar state of central hyperexcitability in the trigeminal system. The purpose of the present study was to conduct a parametric analysis of the response properties of nociceptive and nonnociceptive neurons in trigeminal nucleus caudalis (medullary dorsal horn, MDH) in a rat model of persistent orofacial inflammation. ⋯ These results indicate that persistent orofacial inflammation produced hyperexcitability of MDH nociceptive neurons. TMJ inflammation resulted in more robust changes in MDH nociceptive neurons as compared with PO inflammation, consistent with previous studies of increased inflammation, increased MDH Fos-protein expression, and increased MDH preprodynorphin mRNA expression in this deep tissue orofacial model of pain and hyperalgesia. The inflammation-induced MDH hyperexcitability may contribute to mechanisms of persistent pain associated with orofacial deep tissue painful conditions.
-
The glutamate-mediated synaptic responses of neocortical pyramidal cell to fast-spiking interneuron (pyramidal-FS) connections were studied by performing paired recordings at 30-33 degrees C in acute slices of 14- to 35-day-old rats (n = 39). Postsynaptic fast-spiking (FS) cells were recorded in whole cell configuration with a patch pipette, and presynaptic pyramidal cells were impaled with sharp intracellular electrodes. At a holding potential of -72 mV (near the resting membrane potential), unitary excitatory postsynaptic potentials (EPSPs) had a mean amplitude of 2.1 +/- 1.3 mV and a mean width at half-amplitude of 10.5 +/- 3.7 ms (n = 18). ⋯ By combining paired recordings with extracellular stimulations (n = 11), we demonstrated that EPSPs elicited by two different inputs were summed linearly by FS interneurons at membrane potentials below the action potential threshold. We estimated that, in our in vitro recording conditions, 8 +/- 5 pyramidal cells (n = 18) should be activated simultaneously to make FS interneurons fire an action potential from -72 mV. The low level of temporal summation and the linear summation of excitatory inputs in FS cells favor the role of coincidence detectors of these interneurons in neocortical circuits.