Journal of neurophysiology
-
Spinal serotonin is derived entirely from bulbar sources and plays an important role in spinal modulatory processes, including pain modulation. Establishing the electrophysiological properties of SEROTONERGIC bulbospinal neurons in the pontomedullary raphe and reticular formation is critical to understanding the physiological role of serotonin in the spinal cord. Neurons were characterized by their responses to noxious stimulation and their background discharge pattern in the lightly anesthetized rat. ⋯ The probability of misclassification with the use of this discriminant function was estimated to be < 10%. Employing the discriminant function on a test group of cells whose immunochemical content was unknown revealed a population of SEROTONERGIC-LIKE cells that resembled the labeled SEROTONERGIC cells in background discharge pattern, response to noxious stimulation, and nuclear location. The discharge of pontomedullary SEROTONERGIC neurons is slow and steady, suggesting that these neurons may have a role in the tonic, rather than phasic, modulation of spinal processes.
-
In mammals with good low-frequency hearing and a moderate to large interear distance, neurons in the medial superior olive (MSO) are sensitive to interaural time differences (ITDs). Most small mammals, however, do not hear low frequencies and do not experience significant ITDs, suggesting that their MSOs participate in functions other than ITD coding. In one bat species, the mustached bat, the MSO is a functionally monaural nucleus, acting as a low-pass filter for the rate of sinusoidally amplitude-modulated (SAM) stimuli. ⋯ The different time constants of inputs create a low-pass filter for SAM stimuli. However, the MSO output is an integrated response to the temporal structure of a stimulus as well as its azimuthal position, i.e., IIDs. There are no in vivo results concerning filter characteristics in a "classical" MSO, but our data confirm an earlier speculation about this interdependence based on data accessed from a gerbil brain slice preparation.
-
Current-clamp recordings with the use of the whole cell configuration of the patch-clamp technique were made from postnatal mouse spiral ganglion neurons in vitro. Cultures contained neurons that displayed monopolar, bipolar, and pseudomonopolar morphologies. Additionally, a class of neurons having exceptionally large somata was observed. ⋯ Inward rectification was evaluated in response to hyperpolarizing contrast current injections. Present in both electrophysiological classes, its magnitude was graded from neuron to neuron, reflecting differences in number, type, and/or voltage dependence of the underlying channels. These data suggest that spiral ganglion neurons possess intrinsic firing properties that regulate action potential number and timing, features that may be crucial to signal coding in the auditory periphery.
-
Clinical Trial
Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
Differences in the kinematics and pattern of relative regional cerebral blood flow (rCBF) during goal-directed arm aiming were investigated with the use of a Fitts continuous aiming paradigm with three difficulty conditions (index of difficulty, ID) and two aiming types (transport vs. targeting) in six healthy right-handed young participants with the use of video-based movement trajectory analysis and positron emission tomography. Movement time and kinematic characteristics were analyzed together with the magnitude of cerebral blood flow to identify areas of brain activity proportionate to task and movement variables. Significant differences in rCBF between task conditions were determined by analysis of variance with planned comparisons of means with the use of group mean weighted linear contrasts. ⋯ Differences in unimanual aiming task difficulty lead to dissociable activation of cortical-subcortical networks. Further, these data suggest that when more precise targeting is required, independent of task difficulty, a cortical-subcortical loop composed of the contralateral motor cortex, intraparietal sulcus, and caudate is activated. This is consistent with the role of motor cortex
-
The cellular mechanisms that underlie transient synaptic potentiation were studied in visual cortical slices of adult guinea pigs (> or = age 5 wk postnatal). Postsynaptic potentials (PSPs) elicited by stimulation of the white matter/layer VI border were recorded with conventional intracellular techniques from layer II/III neurons. Transient potentiation (average duration 23 +/- 3 min, mean +/- SE) was evoked by 60 low-frequency (0.1 Hz) pairings of weak afferent stimulation with coincident intracellular depolarizing pulses (80 ms) of the postsynaptic cell. ⋯ It did, however, block subsequent enhancement for several cells (2 of 4) that had previously had their inputs potentiated. Moreover, LNA increased the overall average magnitude of synaptic potentiation (with an additional +28%) when induction was successful. These results suggest that endogenous cortical nitric oxide production can both positively and negatively modulate this NMDA receptor-mediated type of synaptic plasticity.