Journal of neurophysiology
-
Several studies provided evidence that the amplitudes of laser-evoked potentials (LEPs) are modulated by attention. However, previous reports were based on across-trial averaging of LEP responses at the expense of losing information about intertrial variability related to attentional modulation. The aim of this study was to investigate the effects of somatosensory spatial attention on single-trial parameters (i.e., amplitudes, latencies, and latency jitter) of LEP components (N2 and P2). ⋯ Conversely, the latency jitter of the P2 component was smaller for ULS compared with ALS. With the use of single-trial analysis, the study provided new insights into brain dynamics of LEPs related to spatial attention. Our results indicate that single-trial parameters of LEP components are differentially modulated by spatial attention.
-
Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. ⋯ Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity.
-
Each half of the medulla contains respiratory neurons that constitute two generators that control respiratory rhythm. One generator consists of the inspiratory neurons in the pre-Bötzinger complex (preBötC); the other, the pre-inspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG), rostral to the preBötC. We investigated the contribution of the commissural fibers, connecting the respiratory rhythm generators located on the opposite side of the medulla to the generation of respiratory activity in brain stem-spinal cord preparation from 0- to 1-day-old rats. ⋯ The facial and contralateral L1 nerve activities were synchronous, whereas right and left facial (and right and left L1) nerves lost synchrony. Optical recordings demonstrated that pFRG-driven burst activity was preserved after a midline section, whereas the preBötC neurons were no longer rhythmic. We conclude that in newborn rats, crossed excitatory interactions (via commissural fibers) are necessary for the generation of inspiratory bursts but not for the generation of rhythmic Pre-I neuron activity.
-
Changes in ion channel function and expression are characteristic of neuropathic pain. Voltage-gated calcium channels (VGCCs) are integral for neurotransmission and membrane excitability, but relatively little is known about changes in their expression after nerve injury. In this study, we investigate whether peripheral nerve ligation is followed by changes in the density and proportion of high-voltage-activated (HVA) VGCC current subtypes in dorsal root ganglion (DRG) neurons, the contribution of presynaptic N-type calcium channels in evoked excitatory postsynaptic currents (EPSCs) recorded from dorsal horn neurons in the spinal cord, and the changes in expression of mRNA encoding VGCC subunits in DRG neurons. ⋯ No changes were found in the contribution of presynaptic N-type calcium channels in evoked EPSCs recorded from dorsal horn neurons. The α2δ-1 subunit was upregulated by 1.7-fold and γ-3, γ-2, and β-4 subunits were all downregulated 1.7-fold in injured neurons compared with sham-operated neurons. This comprehensive characterization of HVA VGCC subtypes in mouse DRG neurons after nerve injury revealed changes in N- and P/Q-type current proportions only in medium- to large-diameter neurons.
-
Electrical stimulation with high-frequency (2-10 kHz) sinusoidal currents has previously been shown to produce a transient and complete nerve block in the peripheral nervous system. Modeling and in vitro studies suggest that this is due to a prolonged local depolarization across a broad section of membrane underlying the blocking electrode. Previous work has used cuff electrodes wrapped around the peripheral nerve to deliver the blocking stimulus. ⋯ High-frequency block was also successfully applied to the pyramidal tract at the medulla, ascending sensory pathways in the dorsal columns, and the descending systems of the medial longitudinal fasciculus. High-frequency sinusoidal stimulation produces transient, reversible lesions in specific target locations and therefore could be a useful alternative to permanent tissue transection in some experimental paradigms. It also could help to control or prevent some of the hyperactivity associated with chronic neurological disorders.