Journal of neurophysiology
-
Synchronization of neural oscillations is thought to integrate distributed neural populations into functional cell assemblies. Epilepsy is widely regarded as a disorder of neural synchrony. Knowledge is scant, however, regarding whether ictal changes in synchrony involving epileptogenic cortex are expressed similarly across various frequency ranges. ⋯ At slower frequencies, conversely, epileptogenic cortex expressed a relative increase in functional connectivity. Our findings suggest that pHFOs reflect epileptogenic network interactions, yielding theoretical support for their utility in the presurgical evaluation of intractable epilepsy. The view that abnormal network synchronization plays a critical role in ictogenesis and seizure dynamics is supported by the observation that functional isolation of epileptogenic cortex at high frequencies is absent at seizure termination.
-
It has been hypothesized that the human cortical responses to nociceptive and nonnociceptive somatosensory inputs differ. Supporting this view, somatosensory-evoked potentials (SEPs) elicited by thermal nociceptive stimuli have been suggested to originate from areas 1 and 2 of the contralateral primary somatosensory (S1), operculo-insular, and cingulate cortices, whereas the early components of nonnociceptive SEPs mainly originate from area 3b of S1. However, to avoid producing a burn lesion, and sensitize or fatigue nociceptors, thermonociceptive SEPs are typically obtained by delivering a small number of stimuli with a large and variable interstimulus interval (ISI). ⋯ Furthermore, using a blind source separation, we found that, unlike the obligatory components of nonnociceptive SEPs, the obligatory components of nociceptive SEPs do not receive a significant contribution from a contralateral source possibly originating from S1. Instead, they were best explained by sources compatible with bilateral operculo-insular and/or cingulate locations. Taken together, our results indicate that the obligatory components of nociceptive and nonnociceptive SEPs are fundamentally different.
-
γ-Amino butyric acid (GABA) plays a key role in the regulation of central nervous system by activating synaptic and extrasynaptic GABAA receptors. It is acknowledged that extrasynaptic GABAA receptors located in the soma, dendrites, and axons may be activated tonically by low extracellular GABA concentrations. The activation of these receptors produces a persistent conductance that can hyperpolarize or depolarize nerve cells depending on the Cl(-) equilibrium potential. ⋯ Using RT-PCR and Western blotting, we corroborated the presence of the mRNA and the α5GABAA protein in the dorsal root ganglia of the turtle spinal cord. The receptors were localized in primary afferents in dorsal root, dorsal root ganglia, and peripheral nerve terminals using immunoconfocal microscopy. Considering the implications of the DRR in neurogenic inflammation, α5GABAA receptors may serve as potential pharmacological targets for the treatment of pain.
-
Amygdala plasticity is an important contributor to the emotional-affective dimension of pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally acting NPS, but site and mechanism of action remain to be determined. ⋯ Administration of NPS into ITC, but not CeLC, also inhibited vocalizations and anxiety-like behavior in arthritic rats. A selective NPS receptor antagonist ([d-Cys(tBu)(5)]NPS) blocked electrophysiological and behavioral effects of NPS. Thus NPS is a novel tool to control amygdala output and pain-related affective behaviors through a direct action on inhibitory ITC cells.
-
Nerve injury-induced central sensitization can manifest as an increase in excitatory synaptic transmission and/or as a decrease in inhibitory synaptic transmission in spinal dorsal horn neurons. Cytokines such as tumor necrosis factor-α (TNF-α) are induced in the spinal cord under various injury conditions and contribute to neuropathic pain. In this study we examined the effect of TNF-α in modulating excitatory and inhibitory synaptic input to spinal substantia gelatinosa (SG) neurons over time in mice following chronic constriction injury (CCI) of the sciatic nerve. ⋯ Immunohistochemical staining showed that the expression of TNF-α receptor 1 (TNFR1) was increased at 3 days but decreased at 14 days following CCI in the ipsilateral vs. the contralateral spinal cord dorsal horn. These results suggest that TNF-α acting at TNFR1 is important in the development of neuropathic pain by facilitating excitatory synaptic signaling in the acute phases after nerve injury but has a reduced effect on spinal neuron signaling in the later phases of nerve injury-induced pain. Failure of the facilatory effects of TNF-α on excitatory synaptic signaling in the dorsal horn to resolve following nerve injury may be an important component in the transition between acute and chronic pain conditions.