Journal of neurophysiology
-
Recent studies support roles for neurokinin-1 (NK-1) and gastrin-releasing peptide (GRP) receptor-expressing spinal neurons in itch. We presently investigated expression of substance P (SP) and GRP in pruritogen-responsive primary sensory neurons and roles for these neuropeptides in itch signaling. Responses of dorsal root ganglion (DRG) cells to various pruritogens were observed by calcium imaging. ⋯ Systemic or intrathecal administration of a GRP receptor antagonist attenuated scratching evoked by chloroquine and SLIGRL but not BAM8-22 or histamine. The GRP receptor antagonist enhanced scratching evoked by serotonin. These results indicate that SP and GRP expressed in primary sensory neurons are partially involved as neurotransmitters in histamine-independent itch signaling from the skin to the spinal cord.
-
Human handedness has been described and measured from two perspectives: handedness inventories rate hand preferences, whereas other tests examine motor performance asymmetries. These two measurement approaches reflect a major controversy in a literature that defines handedness as either a preference or an asymmetry in sensorimotor processing. Over the past decade, our laboratory has developed a model of handedness based on lateralization of neural processes. ⋯ Inverse dynamics analyses revealed a more proficient dominant arm strategy that exploited intersegmental dynamics to a greater extent than did the nondominant arm. These findings suggest that sensorimotor asymmetries in dynamic coordination might explain limb choices. We discuss the implications of these results for theories of action selection, models of handedness, and models of neural lateralization.
-
General anesthetics produce anesthesia by depressing central nervous system activity. Activation of inhibitory GABA(A) receptors plays a central role in the action of many clinically relevant general anesthetics. Even so, there is growing evidence that anesthetics can act at a presynaptic locus to inhibit neurotransmitter release. ⋯ Synaptotagmin I knockdown also diminished the inhibition produced by propofol and isoflurane, but the magnitude of the effect was not as large. Knockdown of SNAP-25 and SNAP-23 expression also changed the ability of these three anesthetics to inhibit neurotransmitter release. Our results suggest that general anesthetics inhibit the neurotransmitter release machinery by interacting with multiple SNARE and SNARE-associated proteins.
-
Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. ⋯ In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.
-
Review Historical Article
Theories of pain: from specificity to gate control.
Several theoretical frameworks have been proposed to explain the physiological basis of pain, although none yet completely accounts for all aspects of pain perception. Here, we provide a historical overview of the major contributions, ideas, and competing theories of pain from ancient civilizations to Melzack and Wall's Gate Control Theory of Pain.