Journal of neurophysiology
-
Comparative Study
Spinal neurons that express NK-1 receptors modulate descending controls that project through the dorsolateral funiculus.
Selective ablation of spinal neurons possessing substance P receptors (NK-1 receptors) using the selective cytotoxin conjugate substance P-saporin (SP-SAP) decreases hyperalgesia and central sensitization. The mechanisms by which NK-1 expressing neurons modulate the excitability of other dorsal horn neurons are unclear. Because the majority of NK-1 expressing spinal neurons project rostrally, it is possible that they are part of a spinal-supraspinal circuitry that contributes to descending modulation of excitability of spinal nociceptive neurons. ⋯ In vehicle-treated rats, transection of the DLF caused a 233% increase in mean spontaneous activity of neurons and enhanced their responses to mechanical and heat stimuli, whereas these increases in excitation were blocked in rats pretreated with SP-SAP. Importantly, SP-SAP alone had no effect on spontaneous or evoked activity in the absence of DLF transection. These results demonstrate that spinal neurons expressing the NK-1 receptor appear to play a pivotal role in regulating descending systems that modulate activity of nociceptive dorsal horn neurons.
-
Comparative Study
Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices.
Within 2 min of stroke onset, neurons and glia in brain regions most deprived of blood (the ischemic core) undergo a sudden and profound loss of membrane potential caused by failure of the Na+/K+ ATPase pump. This anoxic depolarization (AD) represents a collapse in membrane ion selectivity that causes acute neuronal injury because neurons simply cannot survive the energy demands of repolarization while deprived of oxygen and glucose. In vivo and in live brain slices, the AD resists blockade by antagonists of neurotransmitter receptors (including glutamate) or by ion channel blockers. ⋯ The large nonselective conductance that drives AD is still unidentified but represents a prime upstream target for suppressing acute neuronal damage arising during the first critical minutes of stroke. Sigma receptor ligands provide insight to better define the properties of the channel responsible for anoxic depolarization. Video clips of anoxic depolarization and spreading depression can be viewed at http://anatomy.queensu.ca/faculty/andrew.cfm.
-
In this study, we examined the role of the ventrolateral prefrontal cortex in encoding communication stimuli. Specifically, we recorded single-unit responses from the ventrolateral prefrontal cortext (vlPFC) in awake behaving rhesus macaques in response to species-specific vocalizations. We determined the selectivity of vlPFC cells for 10 types of rhesus vocalizations and also asked what types of vocalizations cluster together in the neuronal response. ⋯ Use of information theoretic approaches to examine vocalization tuning indicates that on average, vlPFC neurons encode information about one or two vocalizations. Further analysis of the types of vocalizations that vlPFC cells typically respond to using hierarchical cluster analysis suggests that the responses of vlPFC cells to multiple vocalizations is not based strictly on the call's function or meaning but may be due to other features including acoustic morphology. These data are consistent with a role for the primate vlPFC in assessing distinctive acoustic features.
-
Comparative Study
Sympathetic modulation of activity in Adelta- and C-primary nociceptive afferents after intradermal injection of capsaicin in rats.
Neuropathic and inflammatory pain can be modulated by the sympathetic nervous system. In some pain models, sympathetic postganglionic efferents are involved in the modulation of nociceptive transmission in the periphery. The purpose of this study is to examine the sensitization of Adelta- and C-primary afferent nociceptors induced by intradermal injection of capsaicin (CAP) to see whether the presence of sympathetic efferents is essential for the sensitization. ⋯ In sympathetically intact rats, pretreatment with an alpha(1)-adrenergic receptor antagonist (terazosin) blocked completely the enhanced responses of C-fibers after CAP injection in sympathetically intact rats without significantly affecting the enhanced responses of Adelta-fibers. In contrast, a blockade of alpha(2)-adrenergic receptors by yohimbine only slightly reduced the CAP-evoked enhancement of responses. We conclude that the presence of sympathetic efferents is essential for the CAP-induced sensitization of Adelta- and C-primary afferent fibers to mechanical stimuli and that alpha(1)-adrenergic receptors play a major role in the sympathetic modulation of C-nociceptor sensitivity in the periphery.
-
Comparative Study
Cortical injury affects short-term plasticity of evoked excitatory synaptic currents.
The hypothesis that plastic changes in the efficacy of excitatory neurotransmission occur in areas of chronic cortical injury was tested by assessing short-term plasticity of evoked excitatory synaptic currents (EPSCs) in neurons of partially isolated neocortical islands (undercut cortex). Whole cell recordings were obtained from layer V pyramidal neurons of sensorimotor cortical slices prepared from P36-P43 control and undercut rats. AMPA/kainate receptor-mediated EPSCs elicited by stimuli delivered at 40 to 66.7 Hz exhibited more paired-pulse depression (PPD) in undercut cortex than control, the time constant of depression evoked by trains of 20- to 66.7-Hz stimuli was faster, and the steady-state amplitude of EPSCs reached after five to seven EPSCs was lower. ⋯ Increasing [Ca(2+)](o) from 2 to 4 mM increased PPD, with a smaller effect in neurons of the undercut. The I-V relationship of AMPA/kainate receptor-mediated EPSCs was close to linear in both control and undercut neurons, and spermine had no significant effect on the EPSCs, suggesting that decreases in postsynaptic glutamate receptors containing the GluR2 subunit were not involved in the alterations in short-term plasticity. Results are compatible with an increase in the probability of transmitter release at excitatory synapses in undercut cortex due to functional changes in presynaptic terminals.