Resp Care
-
Predicting mortality has become a necessary step for selecting patients for clinical trials and defining outcomes. We examined whether stratification by tertiles of respiratory and ventilatory variables at the onset of acute respiratory distress syndrome (ARDS) identifies patients with different risks of death in the intensive care unit. ⋯ A prediction model based on tertiles of patient age, P(plat), and P(aO(2))/F(IO(2)) at the time the patient meets ARDS criteria identifies patients with the lowest and highest risk of intensive care unit death.
-
We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and November 2010. The update of this clinical practice guideline is based on 234 clinical studies and systematic reviews, 19 review articles that investigated capnography/capnometry during mechanical ventilation, and the 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: (1) Continuous-waveform capnography is recommended, in addition to clinical assessment to confirm and monitor correct placement of an endotracheal tube. (2) If waveform capnography is not available, a non-waveform exhaled CO(2) monitor, in addition to clinical assessment, is suggested as the initial method for confirming correct tube placement in a patient in cardiac arrest. (3) End-tidal CO(2) (P(ETCO(2))) is suggested to guide ventilator management. (4) Continuous capnometry during transport of the mechanically ventilated patients is suggested. (5) Capnography is suggested to identify abnormalities of exhaled air flow. (6) Volumetric capnography is suggested to assess CO(2) elimination and the ratio of dead-space volume to tidal volume (V(D)/V(T)) to optimize mechanical ventilation. (7) Quantitative waveform capnography is suggested in intubated patients to monitor cardiopulmonary quality, optimize chest compressions, and detect return of spontaneous circulation during chest compressions or when rhythm check reveals an organized rhythm.
-
Nosocomial pneumonia is a difficult diagnosis to establish in the intensive care unit setting, due to the non-specific nature of the clinical and radiographic findings. Procalcitonin is a circulating biomarker that may become elevated in the presence of bacterial infection. ⋯ Plasma procalcitonin has minimal diagnostic value for nosocomial pneumonia.
-
The placement of nasal or oral gastric tubes is one of the most frequently performed procedures in critically ill children; tube malposition, particularly in the trachea, is an important complication. Neurally adjusted ventilatory assist (NAVA) ventilation (available only on the Servo-i ventilator, Maquet Critical Care, Solna, Sweden) requires a proprietary-design catheter (Maquet Critical Care, Solna, Sweden) with embedded electrodes that detect the electrical activity of the diaphragm (EA(di)). The EA(di) catheter has the potential benefit of confirming proper positioning of a gastric catheter, based on and the EA(di) waveforms. ⋯ EA(di) guidance helps confirm proper gastric catheter position, is equivalent to our standard practice for confirming gastric catheter placement, and may reduce the need for radiographs and improve patient safety by avoiding catheter malpositions.