Resp Care
-
We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and November 2010. The update of this clinical practice guideline is based on 234 clinical studies and systematic reviews, 19 review articles that investigated capnography/capnometry during mechanical ventilation, and the 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: (1) Continuous-waveform capnography is recommended, in addition to clinical assessment to confirm and monitor correct placement of an endotracheal tube. (2) If waveform capnography is not available, a non-waveform exhaled CO(2) monitor, in addition to clinical assessment, is suggested as the initial method for confirming correct tube placement in a patient in cardiac arrest. (3) End-tidal CO(2) (P(ETCO(2))) is suggested to guide ventilator management. (4) Continuous capnometry during transport of the mechanically ventilated patients is suggested. (5) Capnography is suggested to identify abnormalities of exhaled air flow. (6) Volumetric capnography is suggested to assess CO(2) elimination and the ratio of dead-space volume to tidal volume (V(D)/V(T)) to optimize mechanical ventilation. (7) Quantitative waveform capnography is suggested in intubated patients to monitor cardiopulmonary quality, optimize chest compressions, and detect return of spontaneous circulation during chest compressions or when rhythm check reveals an organized rhythm.
-
The placement of nasal or oral gastric tubes is one of the most frequently performed procedures in critically ill children; tube malposition, particularly in the trachea, is an important complication. Neurally adjusted ventilatory assist (NAVA) ventilation (available only on the Servo-i ventilator, Maquet Critical Care, Solna, Sweden) requires a proprietary-design catheter (Maquet Critical Care, Solna, Sweden) with embedded electrodes that detect the electrical activity of the diaphragm (EA(di)). The EA(di) catheter has the potential benefit of confirming proper positioning of a gastric catheter, based on and the EA(di) waveforms. ⋯ EA(di) guidance helps confirm proper gastric catheter position, is equivalent to our standard practice for confirming gastric catheter placement, and may reduce the need for radiographs and improve patient safety by avoiding catheter malpositions.
-
Partial or total obstruction of an endotracheal tube (ETT) by mucus can cause severe respiratory distress, hypoxemia, or death. Signs of an obstructed ETT include increased ventilation pressure, changes in the ventilator graphics, S(pO(2)) decrease, and cardiovascular changes. ⋯ In each case we used a new device (Rescue Cath, Omneotech, Tavernier, Florida) designed to remove mucus from the ETT lumen. The 3 cases demonstrate that the device is effective and capable of relieving the adverse effects of ETT mucus obstruction.
-
The ARDS Network low-tidal-volume protocol is considered the standard of care for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The protocol is built on the foundation of low-tidal-volume ventilation, use of a combined PEEP and F(IO(2)) table, and managing alveolar end-inspiratory pressure by limiting the plateau airway pressure to ≤ 30 cm H(2)O. Although this strategy, to date, is the only method that significantly improves ALI/ARDS survival, alternative methods of improving hypoxemia and minimizing ventilator-induced lung injury, in conjunction with low-tidal-volume ventilation, can be used for life-threatening ARDS. We present a case in which we customized the use of alveolar recruitment maneuvers by analyzing the hysteresis of the pressure-volume curve to assess lung recruitability, decremental PEEP to sustain lung recruitment, and careful use of plateau pressure ≥ 30 cm H(2)O, which improved our patient's life-threatening hypoxemia within the first 36 min of arrival to our ICU.
-
Arterial blood sampling is subject to numerous pre-analytical errors, one of which is inadvertent venous blood sampling. Especially when assessing oxygenation and titrating ventilation, accidental venous blood sampling may lead to inappropriate respiratory care and repeated percutaneous punctures. ⋯ Lower blood pressure increased the sampler filling time. Measuring the filling time may enable therapists to confirm successful arterial puncture in adult patients. Confirming successful arterial puncture prior to blood analysis would expedite appropriate patient care decisions.