Resp Care
-
The respiratory therapist plays an integral role in tracheostomy tube decannulation. Removal of the tracheostomy tube should be considered only if the original upper-airway obstruction is resolved, if airway secretions are controlled, and if mechanical ventilation is no longer needed. ⋯ Tracheostomy decannulation requires caution, particularly following a prolonged period of tracheostomy use. The tracheostomy tube decannulation process is well suited for therapist-implemented protocols.
-
Tracheostomy is one of the most common intensive care unit procedures performed. The advantages include patient comfort, safety, ability to communicate, and better oral and airway care. Patients may have shorter intensive care unit stays, days of mechanical ventilation, and hospital stays. ⋯ As soon as the need for prolonged airway access is identified, the tracheostomy should be considered. Generally, this decision can be made within 7-10 days. Bedside techniques allow rapid tracheostomy with low morbidity.
-
Comparative Study Clinical Trial
Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method.
Volumetric capnography is an alternative method of measuring expired carbon dioxide partial pressure (P(eCO2)) and physiologic dead-space-to-tidal-volume ratio (V(D)/V(T)) during mechanical ventilation. In this method, P(eCO2) is measured at the Y-adapter of the ventilator circuit, thus eliminating the effects of compression volume contamination and the need to apply a correction factor. We investigated the accuracy of volumetric capnography in measuring V(D)/V(T), compared to both uncorrected and corrected measurements, using a metabolic monitor in patients with acute respiratory distress syndrome (ARDS). ⋯ Volumetric capnography measurements of V(D)/V(T) in mechanically-ventilated patients with ARDS are as accurate as those obtained by metabolic monitor technique. .
-
Inhalation is a very old method of drug delivery, and in the 20th century it became a mainstay of respiratory care, known as aerosol therapy. Use of inhaled epinephrine for relief of asthma was reported as early as 1929, in England. An early version of a dry powder inhaler (DPI) was the Aerohalor, used to administer penicillin dust to treat respiratory infections. ⋯ Design and lung-deposition improvement of MDIs, DPIs, and nebulizers are exemplified by the new hydrofluoroalkane-propelled MDI formulation of beclomethasone, the metered-dose liquid-spray Respimat, and the DPI system of the Spiros. Differences among aerosol delivery devices create challenges to patient use and caregiver instruction. Potential improvements in aerosol delivery include better standardization of function and patient use, greater reliability, and reduction of drug loss.
-
Comparative Study
A laboratory evaluation of 2 mechanical ventilators in the presence of helium-oxygen mixtures.
Helium-oxygen (heliox) mixtures are being used more frequently with mechanical ventilators. Newer ventilators continue to be developed that have not yet been evaluated for safety and efficacy of heliox delivery. We studied the performance of 2 previously untested ventilators (Servo-i and Inspiration) during heliox administration. ⋯ Both Ventilators cycled consistently with heliox mixtures. In most cases, actual delivered V(T) can be reliably calculated if the F(IO2) and the set V(T) or the measured exhaled V(T) is known. With the Servo-i, at high helium concentrations the exhaled V(T) measurement was unreliable and caused a high-priority alarm condition that couldn't be disabled. A supplemental oxygen analyzer is not necessary with either device for heliox applications.