Bmc Neurol
-
Observational Study
The changes in clot microstructure in patients with ischaemic stroke and the effects of therapeutic intervention: a prospective observational study.
Stroke is the second largest cause of death worldwide. Hypercoagulability is a key feature in ischaemic stroke due to the development of an abnormally dense clot structure but techniques assessing the mechanics and quality of clot microstructure have limited clinical use. We have previously validated a new haemorheological technique using three parameters to reflect clot microstructure (Fractal Dimension (d f )) ex-vivo, real-time clot formation time (T GP ) and blood clot strength (elasticity at the gel point (G'GP)). We aimed to evaluate these novel clotting biomarkers in ischaemic stroke and changes of clot structure following therapeutic intervention. ⋯ Patients with ischaemic stroke have denser and stronger clot structure as detected by d f and G'GP. The effect of thrombolysis on clot microstructure (d f ) was more prominent than antiplatelet therapy. Further work is needed to assess the clinical and therapeutic implications of these novel biomarkers.
-
Because our previous study showed disparate voxel based morphometry (VBM) results between SPM and FSL softwares in the brain of amyotrophic lateral sclerosis patients with frontotemporal dementia (ALS-FTD), we investigated which VBM results may more represent atrophy by comparing with Freesurfer's cortical volume and thickness measures. ⋯ GM volume changes using FSL showed similar pattern with Freesurfer cortical volume and thickness changes in contrast to SPM results. Our results suggest that, at least for our dataset, VBM results obtained using FSL software should be considered as more representative of GM atrophy.