Laboratory investigation; a journal of technical methods and pathology
-
Intestinal ischemia/reperfusion (I/R) causes mucosal barrier damage and bacterial translocation (BT), leading to septic complications. Previous in vitro studies showed that activation of sodium/glucose transporter 1 (SGLT1) prevented the epithelial apoptosis and permeability rise induced by microbial products. Our aim was to investigate whether luminal glucose uptake by SGLT1 protects against ischemia-induced epithelial cell death and barrier dysfunction, and to explore the glucose-mediated cellular survival pathways in vivo. ⋯ Enhanced membrane translocation and phosphorylation of Akt in epithelial cells were associated with elevated phosphorylation of mTOR, Bad, and FoxO1/3a following glucose uptake. Inhibition of PI3K/Akt signaling by LY294002 and wortmannin partially blocked the glucose-mediated rescue of cell apoptosis and barrier damage. In conclusion, SGLT1 glucose uptake alleviated I/R-induced barrier dysfunction and BT, partly by inhibiting epithelial apoptosis via activation of PI3K/Akt signaling.