Sensors (Basel, Switzerland)
-
The aim of this review was to understand the use of wearable technology in sport in order to enhance performance and prevent injury. Understanding sports biomechanics is important for injury prevention and performance enhancement and is traditionally assessed using optical motion capture. However, such approaches are limited by capture volume restricting assessment to a laboratory environment, a factor that can be overcome by wearable technology. ⋯ A total of 33 articles were included for full-text analysis where participants took part in a sport and performed dynamic movements relating to performance monitored by wearable technologies. Inertial measurement units, flex sensors and magnetic field and angular rate sensors were among the devices used in over 15 sports to quantify motion. Wearable technology usage is still in an exploratory phase, but there is potential for this technology to positively influence coaching practice and athletes' technique.
-
With the continuous improvement of Internet of Things (IoT) technologies, various IoT platforms are under development. However, each IoT platform is developed based on its own device identification system. That is, it is challenging to identify each sensor device between heterogeneous IoT platforms owing to the resource request format (e.g., device identifier) varying between platforms. ⋯ In this process, resource requests between heterogeneous IoT platforms can be reconfigured appropriately for the resources and services requested by the user, and as a result, users can use heterogeneous IoT services. Furthermore, in order to illustrate the aim of the proposed architecture, the proposed IoT DNS is implemented and tested on a microcomputer. The experimental results show that a oneM2M-based device successfully performs a resource request to a Watson IoT and FIWARE sensor devices.
-
For a higher accuracy of projectiles, a novel trajectory correction fuze is proposed. In this design, the sensor and actuator were reduced to achieve a balance between performance and affordability. Following introduction of the fuze concept, the flight model was presented and the crossrange and downrange components of trajectory response under control were investigated. ⋯ The deployment time of canards and roll angle of the forward fuze were derived and used as the inputs of the control system in this strategy. Example closed-loop simulations were implemented to verify the effectiveness of the strategy. The results illustrate that the accuracy increase is evident and the proposed correction concept is applicable for terminal correction of mortars.
-
The Internet of Things scenario is composed of an amalgamation of physical devices. Those physical devices are heterogeneous in their nature both in terms of communication protocols and in data exchange formats. The Web of Things emerged as a homogenization layer that uses well-established web technologies and semantic web technologies to exchange data. ⋯ It is, however, not its scope to be specific enough to enable a computer program to interpret and execute the defined flow of control. In this work, it is our goal to investigate how we can model those procedures using web ontologies in a manner that allows us to directly deploy the procedure implementation. A prototype implementation of the results of our research is implemented along with an analysis of several use cases to show the generality of our proposal.
-
Nowadays, the Internet of Things (IoT) ecosystem is experiencing a lack of interoperability across the multiple competing platforms that are available. Consequently, service providers can only access vertical data silos that imply high costs and jeopardize their solutions market potential. It is necessary to transform the current situation with competing non-interoperable IoT platforms into a common ecosystem enabling the emergence of cross-platform, cross-standard, and cross-domain IoT services and applications. ⋯ It leverages semantic web technologies to address the two key challenges in expanding the IoT beyond product silos into web-scale open ecosystems: data interoperability and resources identification and discovery. The paper provides extensive description of the proposed solution and its implementation details. Regarding the implementation details, it is important to highlight that the platform described in this paper is currently supporting the federation of eleven IoT deployments (from heterogeneous application domains) with over 10,000 IoT devices overall which produce hundreds of thousands of observations per day.