Sensors (Basel, Switzerland)
-
Wheezing reveals important cues that can be useful in alerting about respiratory disorders, such as Chronic Obstructive Pulmonary Disease. Early detection of wheezing through auscultation will allow the physician to be aware of the existence of the respiratory disorder in its early stage, thus minimizing the damage the disorder can cause to the subject, especially in low-income and middle-income countries. ⋯ Specifically, IIS-NMPCF is based on a bases sharing process in which inter-segment information, informed by a wheezing detection system, is incorporated into the factorization to reconstruct a more accurate modelling of normal respiratory sounds. Results demonstrate the significant improvement obtained in the wheezing sound quality by IIS-NMPCF compared to the conventional NMPCF for all the Signal-to-Noise Ratio (SNR) scenarios evaluated, specifically, an SDR, SIR and SAR improvement equals 5.8 dB, 4.9 dB and 7.5 dB evaluating a noisy scenario with SNR = -5 dB.
-
In a few years, the world will be populated by billions of connected devices that will be placed in our homes, cities, vehicles, and industries. Devices with limited resources will interact with the surrounding environment and users. Many of these devices will be based on machine learning models to decode meaning and behavior behind sensors' data, to implement accurate predictions and make decisions. ⋯ The aim of this work is to provide a review of the main techniques that guarantee the execution of machine learning models on hardware with low performances in the Internet of Things paradigm, paving the way to the Internet of Conscious Things. In this work, a detailed review on models, architecture, and requirements on solutions that implement edge machine learning on Internet of Things devices is presented, with the main goal to define the state of the art and envisioning development requirements. Furthermore, an example of edge machine learning implementation on a microcontroller will be provided, commonly regarded as the machine learning "Hello World".
-
Cardiovascular diseases are the main cause of death worldwide, with sleep disordered breathing being a further aggravating factor. Respiratory illnesses are the third leading cause of death amongst the noncommunicable diseases. The current COVID-19 pandemic, however, also highlights the impact of communicable respiratory syndromes. ⋯ LVET and PEP estimation errors were 10% and 21%, respectively. Respiratory rates were estimated with mean absolute errors below 1.2 bpm, and the respiratory signal yielded a correlation of 0.66. We conclude that the estimation of ECG, PEP, LVET, and respiratory parameters is feasible using a wearable, multimodal acquisition device and encourage further research in multimodal signal fusion for respiratory signal estimation.
-
Planetary gearbox is a critical component for many mechanical systems. It is essential to monitor the planetary gearbox health and performance in order to maintain the whole machine works well. The methodology of mechanical fault diagnosis is increasingly intelligent with the extensive application of deep learning. ⋯ In addition, the intelligent fault diagnostic scheme for planetary gearbox under varying speed conditions was developed. After that, some experiments on measured vibration signals of planetary gearbox were conducted to verify the validity and efficiency of the fault diagnostic scheme. The results showed that the proposed method enhanced the capability of the intelligent diagnosis for planetary gear faults under varying speed conditions.
-
Individuals with lower-limb amputation often have gait deficits and diminished mobility function. Biofeedback systems have the potential to improve gait rehabilitation outcomes. Research on biofeedback has steadily increased in recent decades, representing the growing interest toward this topic. ⋯ Biofeedback must not be obtrusive and ideally provide a level of enjoyment to the user. Biofeedback appears to be most effective during the early stages of rehabilitation but presents some usability challenges when applied to the elderly. More research is needed on younger populations and higher amputation levels, understanding retention as well as the relationship between training intensity and performance.