Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Pulse pressure variation estimation using a sequential Monte Carlo method.
We describe a novel automatic algorithm to continuously estimate the pulse pressure variation (PPV) index from arterial blood pressure (ABP) signals. The algorithm utilizes our recently developed sequential Monte Carlo method (SMCM) based on a maximum A-Posterior adaptive marginalized particle filter (MAM-PF). The PPV index is one of most specific and sensitive dynamic indicators of fluid responsiveness in mechanically ventilated patients. We report the assessment results of the proposed algorithm on real ABP signals.
-
Nerve localization using peripheral nerve stimulation (PNS) is affected by tissue properties, the anatomy surrounding the nerve, and characteristics of the stimulus waveform. A better understanding of the factors influencing PNS should lead to improved nerve localization techniques for use in regional anesthesia. A finite element approach is described here that includes capacitive effects and accounts for frequency-dependent tissue properties in a computationally efficient manner. The modeling approach can be applied to other bioelectric problems where capacitive effects may be important.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Electrode design for high frequency block: effect of bipolar separation on block thresholds and the onset response.
The delivery of high frequency alternating currents (HFAC) to peripheral nerves has been shown to produce a rapid and reversible nerve conduction block at the site of the electrode, and holds therapeutic promise for diseases associated with undesired or pathological neural activity. It has been known since 1939 that the configuration of an electrode used for nerve block can impact the quality of the block, but to date no formal study of the impact of electrode design on high frequency nerve block has been performed. Using a mammalian small animal model, it is demonstrated that the contact separation distance for a bipolar nerve cuff electrode can impact two important factors related to high frequency nerve block: the amplitude of HFAC required to block the nerve (block threshold), and the degree to which the transient "onset response" which always occurs when HFAC is first applied to peripheral nerves, is present. This study suggests that a bipolar electrode with a separation distance of 1.0 mm minimizes current delivery while producing high frequency block with a minimal onset response in the rat sciatic nerve.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Clinical TrialA hybrid platform based on EOG and EEG signals to restore communication for patients afflicted with progressive motor neuron diseases.
An efficient alternative channel for communication without overt speech and hand movements is important to increase the quality of life for patients suffering from Amiotrophic Lateral Sclerosis or other illnesses that prevent correct limb and facial muscular responses. Often, such diseases leave the ocular movements preserved for a relatively long time. The aim of this study is to present a new approach for the hybrid system which is based on the recognition of electrooculogram (EOG) and electroencephalogram (EEG) measurements for efficient communication and control. ⋯ A comparison of the performance of the EOG-based system has been made with a BCI system that uses P300 waveforms. As a next step, we plan to integrate EOG and EEG sides. The final goal of the project is to realize a unique noninvasive device able to offer the patient the partial restoration of communication and control abilities with EOG and EEG signals.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Noninvasive cardiac output estimation using a novel photoplethysmogram index.
Cardiac output (CO) monitoring is essential for indicating the perfusion status of the human cardiovascular system under different physiological conditions. However, it is currently limited to hospital use due to the need for either skilled operators or big, expensive measurement devices. Therefore, in this paper we devise a new CO indicator which can easily be incorporated into existing wearable devices. ⋯ After least squares linear regression, the precision between CO(imp) and CO estimated from IHAR (CO(IHAR)) was 1.40 L/min. The total percentage error of the results was 16.2%, which was well below the clinical acceptance limit of 30%. The results suggest that IHAR is a promising indicator for wearable and noninvasive CO monitoring.