Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Automated beat onset and peak detection algorithm for field-collected photoplethysmograms.
Recent reports suggest that photoplethysmography (PPG), which is a component of routine pulse oximetry, may be useful for detecting hypovolemia. An essential step in extracting and analyzing common PPG features is the robust identification of onset and peak locations of the vascular beats, despite varying beat morphologies and major oscillations in the baseline. Some prior reports used manual analysis of the PPG waveform; however, for systematic widespread use, an automated method is required. ⋯ We validated the algorithm by clinician evaluation of 100 randomly selected PPG waveform samples. For 99% of the beats, the algorithm was able to credibly identify the onsets and peaks of vascular beats, although the precise locations were ambiguous, given the very noisy data from actual clinical operations. The algorithm appears promising, and future consideration of its diagnostic capabilities and limitations is warranted.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Estimation of blood pressure variability using independent component analysis of photoplethysmographic signal.
The maximum cross-correlation coefficient rho(max) between blood pressure variability and heart rate variability, whose frequency components are limited to the Mayer wave-related band, is a useful index to evaluate the state of the autonomic nervous function related to baroreflex. However, measurement of continuous blood pressure with an expensive and bulky measuring device is required to calculate rho(max). ⋯ In the proposed method, independent components are extracted from feature variables specified by the PPG signal by using the independent component analysis (ICA), and then the most appropriate component is chosen out of them so that the rho(max) based on the component can fit its true value. The results from the experiment with a postural change performed in 17 healthy subjects suggested that the proposed method is available for estimating rho(max) by using the ICA to extract blood pressure information from the PPG signal.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Optimizing cardiac resuscitation outcomes using wavelet analysis.
Ventricular fibrillation (VF) is the most lethal of cardiac arrhythmias that leads to sudden cardiac death if untreated within minutes of its occurrence. Defibrillation using electric shock resets the heart to return to spontaneous circulation (ROSC) state, however the success of which depends on various factors such as the viability of myocardium and the time lag between the onset of VF to defibrillation. Recent studies have reported that performing cardio pulmonary resuscitation (CPR) procedure prior to applying shock increases the survival rate especially when VF is untreated for more than 5 minutes. ⋯ Existing works in the literature have demonstrated correlation between the characteristics of the VF waveform and the outcome (ROSC) of the defibrillation. The proposed work improves on this by attempting to arrive at a near real-time monitoring tool in aiding the EMS staff. Using data collected from 16 pigs during VF, the proposed wavelet methodology achieved an overall accuracy of 94% in successfully predicting the shock outcomes.
-
Nerve localization using peripheral nerve stimulation (PNS) is affected by tissue properties, the anatomy surrounding the nerve, and characteristics of the stimulus waveform. A better understanding of the factors influencing PNS should lead to improved nerve localization techniques for use in regional anesthesia. A finite element approach is described here that includes capacitive effects and accounts for frequency-dependent tissue properties in a computationally efficient manner. The modeling approach can be applied to other bioelectric problems where capacitive effects may be important.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Hemodynamic models of cerebral aneurysms for assessment of effect of vessel geometry on risk of rupture.
Surgical decisions on treatment of cerebral aneurysms are based predominantly on aneurysm size. This study has assessed the influence of parent vessel geometry on intra-aneurysmal flow patterns and mass flow rate using computational fluid dynamics and finite element modeling of straight and curved vessels feeding saccular aneurysms of varying size and aspect ratio. ⋯ The dependency of parent vessel geometry is a function of aneurysm aspect ratio and shows minimal dependency at an aspect ratio of 1.68. These findings could be used for improved quantification of risk of rupture of cerebral aneurysms detected from clinical imaging modalities and to aid surgical decision making.