Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Estimation of the aortic pressure waveform from a radial artery pressure waveform via an adaptive transfer function: Feasibility demonstration in swine.
We previously proposed a new technique to estimate the physiologically and clinically more relevant central aortic pressure (AP) waveform from a conveniently and safely measured peripheral artery pressure (PAP) waveform distorted by wave reflections. In contrast to conventional generalized transfer function (GTF) techniques, the technique is able to adapt the transfer function relating PAP to AP to the inter-patient and temporal variability of the arterial tree by defining it through a tube model and invoking the fact that aortic flow is negligible during diastole to estimate the unknown model parameters. We conducted feasibility testing of this adaptive transfer function technique here with respect to radial artery pressure (RAP) waveforms, for the first time, as well as femoral artery pressure (FAP) waveforms from four swine instrumented with AP catheters during several hemodynamic conditions. Our results showed that the AP waveforms estimated by the technique from the RAP and FAP waveforms were in superior agreement to the measured AP waveforms (overall respective errors of 4.1 and 4.8 mmHg) than the two unprocessed PAP waveforms (9.1 and 8.1 mmHg) and a previous GTF technique trained on a subset of the same data (5.0 and 5.8 mmHg).
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Detection of respiratory rhythm from photoplethysmographic signal by adaptive morphological filter.
An approach using morphological filter technique is proposed to determine the respiratory rhythm from the photoplethysmographic (PPG) signal. As the structuring elements of morphological filter have a decisive effect on the analysis result, in the study the structuring elements are determined by the individual heart rate adaptively. ⋯ Furthermore, the low computational complexity of the algorithm may make it easy to be implemented on Microprogrammed Control Units (MCU) for real-time processing. More experimental data is necessary to improve the reliability and robustness of the algorithm.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Macroscopic two-pump two-vasculature cardiovascular model to support treatment of acute heart failure.
Comprehensive understanding of hemodynamics remains a challenge even for expert cardiologists, partially due to a lack of an appropriate macroscopic model. We attempted to amend three major problems of Guyton's conceptual model (unknown left atrial pressure, unilateral heart damage, blood redistribution) and developed a comprehensive macroscopic model of hemodynamics that provides quantitative information. ⋯ Pump functions of left and right heart are expressed by an integrated cardiac output curve, and the capacitive function of total vasculature by a venous return surface. The equations for both the cardiac output curve and venous return surface would facilitate precise diagnosis (especially evaluation of blood volume) and choice of appropriate treatments, including application to autopilot systems.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Fuzzy control for closed-loop, patient-specific hypnosis in intraoperative patients: a simulation study.
Research has demonstrated the efficacy of closed-loop control of anesthesia using bispectral index (BIS) as the controlled variable, and the recent development of model-based, patient-adaptive systems has considerably improved anesthetic control. To further explore the use of model-based control in anesthesia, we investigated the application of fuzzy control in the delivery of patient-specific propofol-induced hypnosis. In simulated intraoperative patients, the fuzzy controller demonstrated clinically acceptable performance, suggesting that further study is warranted.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2009
Evaluation of three automatic oxygen therapy control algorithms on ventilated low birth weight neonates.
Neonates with under developed lungs often require oxygen therapy. During the course of oxygen therapy, elevated levels of blood oxygenation, hyperoxemia, must be avoided or the risk of chronic lung disease or retinal damage is increased. ⋯ All 3 automatic control algorithms demonstrated their ability to improve manual oxygen therapy by increasing periods of normoxemia and reducing the need for manual FiO(2) adjustments. Of the three control algorithms, the adaptive model showed the best performance with 0.25 manual adjustments per hour and 73% time spent within target +/- 3% SpO(2).