NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2019
Every hit matters: White matter diffusivity changes in high school football athletes are correlated with repetitive head acceleration event exposure.
Recent evidence of short-term alterations in brain physiology associated with repeated exposure to moderate intensity subconcussive head acceleration events (HAEs), prompts the question whether these alterations represent an underlying neural injury. A retrospective analysis combining counts of experienced HAEs and longitudinal diffusion-weighted imaging explored whether greater exposure to incident mechanical forces was associated with traditional diffusion-based measures of neural injury-reduced fractional anisotropy (FA) and increased mean diffusivity (MD). ⋯ This finding demonstrates that subconcussive HAEs induce low-level neurotrauma, with prolonged exposure producing greater accumulation of neural damage. The duration and extent of recovery associated with periods in which athletes do not experience subconcussive HAEs now represents a priority for future study, such that appropriate participation and training schedules may be developed to minimize the risk of long-term neurological dysfunction.
-
NeuroImage. Clinical · Jan 2019
Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling.
Primary lateral sclerosis (PLS) is a low incidence motor neuron disease which carries a markedly better prognosis than amyotrophic lateral sclerosis (ALS). Despite sporadic reports of extra-motor symptoms, PLS is widely regarded as a pure upper motor neuron disorder. The post mortem literature of PLS is strikingly sparse and very little is known of subcortical grey matter pathology in this condition. ⋯ PLS is associated with considerable subcortical grey matter degeneration and due to the extensive extra-motor involvement, it should no longer be regarded a pure upper motor neuron disorder. Given its unique pathological features and a clinical course which differs considerably from ALS, dedicated research studies and disease-specific therapeutic strategies are urgently required in PLS.
-
NeuroImage. Clinical · Jan 2019
Rapid myelin water imaging for the assessment of cervical spinal cord myelin damage.
Rapid myelin water imaging (MWI) using a combined gradient and spin echo (GRASE) sequence can produce myelin specific metrics for the human brain. Spinal cord MWI could be similarly useful, but technical challenges have hindered routine application. GRASE rapid MWI was recently successfully implemented for imaging of healthy cervical spinal cord and may complement other advanced imaging methods, such as diffusion tensor imaging (DTI) and quantitative T1 (qT1). ⋯ GRASE is sufficiently sensitive to detect decreased myelin within MS spinal cord plaques, NMO lesions, and PLS diffuse spinal cord injury. Decreased MWF in PLS is consistent with demyelination secondary to motor neuron degeneration. GRASE MWI is a feasible method for rapid assessment of myelin content in the cervical spinal cord and provides complementary information to that of DTI and qT1 measures.
-
NeuroImage. Clinical · Jan 2019
Selective hippocampal subfield volume reductions in classic trigeminal neuralgia.
Trigeminal Neuralgia (TN) is a chronic neuropathic pain syndrome characterized by paroxysmal unilateral shock-like pains in the trigeminal territory most frequently attributed to neurovascular compression of the trigeminal nerve at its root entry zone. Recent advances in the study of TN suggest a possible central nervous system (CNS) role in modulation and maintenance of pain. TN and other chronic pain patients commonly experience alterations in cognition and affect, as well as abnormalities in CNS volume and microstructure in regions associated with pain perception, emotional modulation, and memory consolidation. ⋯ Overall, we demonstrate selective hippocampal subfield volume reduction in patients with classic TN. These changes occur in subfields implicated as neural circuits for chronic pain processing. Selective subfield volume reduction suggests aberrant processes and circuitry reorganization, which may contribute to development and/or maintenance of TN symptoms.
-
NeuroImage. Clinical · Jan 2019
Altered EEG alpha and theta oscillations characterize apathy in Parkinson's disease during incentivized movement.
Apathy is a common non-motor symptom of Parkinson's disease (PD) that is difficult to quantify and poorly understood. Some studies have used incentivized motor tasks to assess apathy, as the condition is often associated with a reduction in motivated behavior. Normally event-related desynchronization, a reduction of power in specific frequency bands, is observed in the motor cortex during the peri-movement period. ⋯ Further, we found that both resting power and relative power in alpha and theta bands during incentivized movement predicted PD subjects' apathy scores. Our results suggest that apathetic PD patients may need to overcome greater baseline alpha and theta oscillatory activity in order to facilitate incentivized movement. Clinically, resting alpha and theta power as well as alpha and theta event-related desynchronization during movement may serve as potential neural markers for apathy severity in PD.