NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2018
A dual modeling approach to automatic segmentation of cerebral T2 hyperintensities and T1 black holes in multiple sclerosis.
Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WML) in multiple sclerosis (MS). The most widely established MRI outcome measure is the volume of hyperintense lesions on T2-weighted images (T2L). Unfortunately, T2L are non-specific for the level of tissue destruction and show a weak relationship to clinical status. Interest in lesions that appear hypointense on T1-weighted images (T1L) ("black holes") has grown because T1L provide more specificity for axonal loss and a closer link to neurologic disability. The technical difficulty of T1L segmentation has led investigators to rely on time-consuming manual assessments prone to inter- and intra-rater variability. This study aims to develop an automatic T1L segmentation approach, adapted from a T2L segmentation algorithm. ⋯ Though originally designed to segment T2L, MIMoSA performs well for segmenting T1 black holes in patients with MS.
-
NeuroImage. Clinical · Jan 2018
Clinical TrialTractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression.
Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (slMFB) emerges as a - yet experimental - treatment for major depressive disorder (MDD) and other treatment refractory psychiatric diseases. First experiences have been reported from two open label pilot trials in major depression (MDD) and long-term effectiveness for MDD (50 months) has been reported. ⋯ The detailed surgical procedure of slMFB DBS implantation has not been described before. The slMFB emerges as an interesting region for the treatment of major depression (and other psychiatric diseases) with DBS. So far it has only been successfully researched in open label clinical case series and in 15 patients published. Stimulation probably achieves its effect through direct white-matter modulation of slMFB fibers. The surgical implantation comprises a standardized protocol combining tractographic imaging based on DTI, targeting and electrophysiological evaluation of the target region. To this end, slMFB DBS surgery is in technical aspects comparable to typical movement disorder surgery. In our view, slMFB DBS should only be performed under tractographic assistance.
-
NeuroImage. Clinical · Jan 2018
Connectivity derived thalamic segmentation in deep brain stimulation for tremor.
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. ⋯ The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
-
NeuroImage. Clinical · Jan 2018
Behavioral and EEG responses to social evaluation: A two-generation family study on social anxiety.
Social anxiety disorder is an invalidating psychiatric disorder characterized by extreme fear and avoidance of one or more social situations in which patients might experience scrutiny by others. The goal of this two-generation family study was to delineate behavioral and electrocortical endophenotypes of social anxiety disorder related to social evaluation. Nine families of patients with social anxiety disorder (their spouse and children, and siblings of these patients with spouse and children) performed a social judgment paradigm in which they believed to be evaluated by peers. ⋯ Increased N1 possibly reflects hypervigilance to socially threatening stimuli, and increased P3 might reflect that positive feedback is more important for, and/or less expected by, participants with social anxiety disorder. Finally, increased feedback-related negativity and theta power in response to unexpected rejection feedback compared to the other conditions co-segregated with social anxiety disorder, but these EEG measures were not heritable. The candidate endophenotypes might play a new and promising role in future research on genetic mechanisms, early detection and/or prevention of social anxiety disorder.
-
NeuroImage. Clinical · Jan 2018
Regional cortical perfusion on arterial spin labeling MRI in dementia with Lewy bodies: Associations with clinical severity, glucose metabolism and tau PET.
Visually preserved metabolism in posterior cingulate cortex relative to hypometabolism in precuneus and cuneus, the cingulate island sign, is a feature of dementia with Lewy bodies (DLB) on FDG-PET. Lower cingulate island sign ratio (posterior cingulate cortex/cuneus+precuneus; FDG-CISr) values have been associated with a higher Braak neurofibrillary tangle stage in autopsied DLB. Using voxel-wise analysis, we assessed the patterns of regional cortical perfusion and metabolism, and using an atlas-based approach, we measured perfusion cingulate island sign ratio on arterial spin labeling MRI (ASL-CISr), and its associations with FDG-CISr, uptake on tau-PET and clinical severity in DLB. ⋯ Lower perfusion in precuneus and cuneus was associated with worse global clinical scores. In summary, the pattern of cortical hypoperfusion on ASL-MRI is similar to hypometabolism on FDG-PET, and respective cingulate island sign ratios correlate with each other in DLB. Non-invasive and radiotracer-free ASL-MRI may be further developed as a tool for the screening and diagnostic evaluation of DLB patients in a variety of clinical settings where FDG-PET is not accessible.