NeuroImage. Clinical
-
NeuroImage. Clinical · Jan 2018
Longitudinal structural gray matter and white matter MRI changes in presymptomatic progranulin mutation carriers.
Mutations in the progranulin (GRN) gene are a major source of inherited frontotemporal degeneration (FTD) spectrum disorders associated with TDP-43 proteinopathy. We use structural MRI to identify regions of baseline differences and longitudinal changes in gray matter (GM) and white matter (WM) in presymptomatic GRN mutation carriers (pGRN+) compared to young controls (yCTL). ⋯ Longitudinal MRI provides evidence of progressive GM and WM changes in pGRN+ participants relative to yCTL. Structural MRI illustrates the natural history of presymptomatic GRN carriers, and may provide an endpoint during disease-modifying treatment trials for pGRN+ individuals at risk for FTD.
-
NeuroImage. Clinical · Jan 2018
Parkinson's disease related signal change in the nigrosomes 1-5 and the substantia nigra using T2* weighted 7T MRI.
Improved markers for the progression of Parkinson's disease (PD) are required. Previous work has proven that iron dependent MRI scans can detect the largest Nigrosome (N1) within the substantia nigra (SN) pars compacta and changes in PD. Histopathological studies have shown that N1 is particularly affected in early PD whereas the other nigrosomes (N2-N5) and the surrounding iron-rich SN are affected later. ⋯ All nigrosomes can be detected using 7T MRI, and PD induced T2*weighted signal reduction was greatest in the nigrosomes (especially N1). The graded T2*weighted signal alterations in the nigrosomes match previously described differential histopathological effects of PD. N1 was identified with the highest confidence and T2*weighted signal in N1 correlated with UPDRS confirming N1 as the most promising SN marker of PD pathology.
-
NeuroImage. Clinical · Jan 2018
Anatomic & metabolic brain markers of the m.3243A>G mutation: A multi-parametric 7T MRI study.
One of the most common mitochondrial DNA (mtDNA) mutations, the A to G transition at base pair 3243, has been linked to changes in the brain, in addition to commonly observed hearing problems, diabetes and myopathy. However, a detailed quantitative description of m.3243A>G patients' brains has not been provided so far. In this study, ultra-high field MRI at 7T and volume- and surface-based data analyses approaches were used to highlight morphology (i.e. atrophy)-, microstructure (i.e. myelin and iron concentration)- and metabolism (i.e. cerebral blood flow)-related differences between patients (N = 22) and healthy controls (N = 15). ⋯ In addition, several regions linked to attentional control (e.g. middle frontal gyrus), the sensorimotor network (e.g. banks of central sulcus) and the default mode network (e.g. precuneus) were characterized by alterations in cortical thickness, T1, T2* and/or cerebral blood flow, which has not been described in previous MRI studies. Finally, several hypotheses, based either on vascular, metabolic or astroglial implications of the m.3243A>G mutation, are discussed that potentially explain the underlying pathobiology. To conclude, this is the first 7T and also the largest MRI study on this patient population that provides macroscopic brain correlates of the m.3243A>G mutation indicating potential MRI biomarkers of mitochondrial diseases and might guide future (longitudinal) studies to extensively track neuropathological and clinical changes.
-
NeuroImage. Clinical · Jan 2018
Single-subject classification of presymptomatic frontotemporal dementia mutation carriers using multimodal MRI.
Classification models based on magnetic resonance imaging (MRI) may aid early diagnosis of frontotemporal dementia (FTD) but have only been applied in established FTD cases. Detection of FTD patients in earlier disease stages, such as presymptomatic mutation carriers, may further advance early diagnosis and treatment. In this study, we aim to distinguish presymptomatic FTD mutation carriers from controls on an individual level using multimodal MRI-based classification. ⋯ FTD mutation carriers can be separated from controls with a modest AUC even before symptom-onset, using a newly created carrier-control classification model, while this was not possible using a recent bvFTD classification model. A multimodal MRI-based classification score may therefore be a useful biomarker to aid earlier FTD diagnosis. The exclusive selection of white matter features in the best performing model suggests that the earliest FTD-related pathological processes occur in white matter.
-
NeuroImage. Clinical · Jan 2018
Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury.
To reveal the immediate extent of trauma-induced neurodegenerative changes rostral to the level of lesion and determine the predictive clinical value of quantitative MRI (qMRI) following acute spinal cord injury (SCI). ⋯ Neurodegenerative changes rostral to the level of lesion occur early in SCI, with varying temporal and spatial dynamics. Early qMRI markers of spinal cord and cerebellum are predictive of functional recovery. These neuroimaging biomarkers may supplement clinical assessments and provide insights into the potential of therapeutic interventions to enhance neural plasticity.