Handbook of clinical neurology
-
Fabry disease results from deficient activity of the enzyme α-galactosidase A and progressive lysosomal deposition of globotriaosylceramide (GL-3) in cells throughout the body. The main neurological presentations of Fabry disease patients are painful neuropathy, hypohidrosis, and stroke. Fabry neuropathy is characterized as a length-dependent peripheral neuropathy affecting mainly the small myelinated (Aδ) fibers and unmyelinated (C) fibers. ⋯ Early initiation of ERT before irreversible organ failure is extremely important, and alternative therapeutic approaches are currently being explored. Heterozygotes suffer from peripheral neuropathy at a higher rate than previously shown, significant multisystemic disease, and severely decreased quality of life. As well as being carriers, heterozygotes also display symptoms of Fabry disease, and should be carefully monitored and given adequate therapy.
-
Peripheral neuropathies are the most common neurological manifestations occurring in HIV-infected individuals. Distal symmetrical sensory neuropathy is the most common form encountered today and is one of the few that are specific to HIV infection or its treatment. The wide variety of other neuropathies is akin to the neuropathies seen in the general population and should be managed accordingly. ⋯ One is left with cannabis, which cannot be recommended as routine therapy, recombinant human nerve growth factor, which is unavailable, and topical capsaicin with its side-effects. Much has been done to and learned from HIV infection in humans; HIV-infected individuals, treated with ART, are now dying mostly from cardiovascular disease and non-AIDS-related cancers. It hence behooves us to find new approaches to mitigate the residual neurological morbidity that still impacts the quality of life of that population.
-
Neglected tropical diseases are a group of mostly infectious diseases that thrive among poor populations in tropical countries. A significant proportion of the conditions affecting the neurological system in such countries can be attributed to neglected tropical diseases of helminth, protozoan, bacterial, or viral origin. ⋯ In resource-poor settings it is likely that many infections will not be treated and will therefore progress into their advanced and severe stages, thus being increasingly associated with irreversible morbidity; this is also the case for neurological morbidity, which often entails permanent disability. Public health should aim at reducing the burden of tropical neurological diseases through interventions addressing the infection, the associated morbidity, and the disability deriving from it.
-
Review
Deep brain stimulation in obsessive-compulsive disorder: neurocircuitry and clinical experience.
The last decade has seen a significant rise in interest in the use of deep brain stimulation (DBS) for the management of obsessive-compulsive disorder (OCD), one of psychiatry's most challenging conditions. The prominent role of both thought (obsessions) and motor (compulsions) dysfunction in OCD place the condition at the border between the neurological and the psychiatric. ⋯ Results of DBS trials in treatment- resistant OCD have been remarkably similar, with clinical response rates in the range of 40-60%, despite the use of a diverse range of targets. These results imply that a common underlying circuit is being modulated, and moreover that there is room for improvement, and debate, in the development of an evidence-driven DBS treatment for this chronic, debilitating illness.
-
Deep brain stimulation for seizures has been applied to cerebellum, caudate, locus coeruleus, subthalamic nucleus, mammillary bodies, centromedian thalamus, anterior nucleus of thalamus, hippocampus and amygdala, hippocampal commissure, corpus callosum, neocortex, and occasionally to other sites. Animal and clinical studies have primarily investigated seizure prevention and, to a lessersmaller extent, seizure interruption. No studies have yet shown stimulation able to cure epilepsy. ⋯ We do not know the mechanisms, the best stimulation parameters, the best patient population, or how to predict benefit in advance. We do not know why benefit of neurostimulation for epilepsy seems to increase over time or whether there are long-term deleterious effects. All of these questions may be answerable with a combination of laboratory research and clinical experience.