Handbook of clinical neurology
-
The central autonomic nervous system (CAN) is a multifaceted, richly connected neural network incorporating the hypothalamus, its descending tracts through the brainstem, the insular cortex and down into the spinal cord. All levels of the CAN are susceptible to injury following traumatic brain injury (TBI), whether from focal or diffuse injury. ⋯ Subarachnoid hemorrhage (SAH), a common complication following TBI, also has predictable effects on autonomic control that can be understood with reference to spontaneous SAH literature. Finally, paroxysmal sympathetic hyperactivity (PSH), a syndrome incorporating episodes of heightened sympathetic drive and motor overactivity following minor stimulation, is discussed as an example of what happens when central inhibitory control of spinal cord autonomics is impaired.
-
Disentangling the effects of "organic" neurologic damage and psychological distress after a traumatic brain injury poses a significant challenge to researchers and clinicians. Establishing a link between traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) has been particularly contentious, reflecting difficulties in establishing a unique diagnosis for conditions with overlapping and sometimes contradictory symptom profiles. ⋯ Further, we describe neurobiological models of PTSD, highlighting how patterns of neurologic damage typical in TBI may promote or protect against the development of PTSD in brain-injured populations. These data highlight the unique course of PTSD following a TBI and have important diagnostic, prognostic, and treatment implications for individuals with a dual diagnosis.
-
In the past, direct physical evidence of mild traumatic brain injury (mTBI) from explosive blast has been difficult to obtain through conventional imaging modalities such as T1- and T2-weighted magnetic resonance imaging (MRI) and computed tomography (CT). Here, we review current progress in detecting evidence of brain injury from explosive blast using advanced imaging, including diffusion tensor imaging (DTI), functional MRI (fMRI), and the metabolic imaging methods such as positron emission tomography (PET) and magnetic resonance spectroscopic imaging (MRSI), where each targets different aspects of the pathology involved in mTBI. ⋯ Additionally, although used less frequently for conventional mTBI, PET has the potential to characterize a variety of neurotransmitter systems using target agents and will undoubtedly play a larger role, once the basic mechanisms of injury are better understood and techniques to identify the injury are more common. Finally, our MRSI imaging studies, although acquired at much lower spatial resolution, have demonstrated selectivity to different metabolic and physiologic processes, uncovering some of the most profound differences on an individual by individual basis, suggesting the potential for utility in the management of individual patients.
-
Each year close to 20000 Americans are involved in gunshot wounds to the head (GSWH). Over 90% of the victims of GSWH eventually fail to survive and only a meager 5% of the patients have a chance to continue with a useful life. One of the fundamental jobs of providers is to realize who the best candidate for the best possible management is. ⋯ In case of a positive study, these patients should have endovascular management of their vascular injuries in order to prevent catastrophic intracerebral hematomas and permanent deficit. Although supported by class III data, subjects of GSWH need to be on broad spectrum antibiotics for a period of 3-5 days. If cerebrospinal fluid (CSF) fistulas are observed at any time during the patient's hospital course, they should be taken very seriously and appropriate management is needed to prevent deep intracranial infections.
-
Complex regional pain syndrome (CRPS) is the current consensus-derived name for a syndrome usually triggered by limb trauma. Required elements include prolonged, disproportionate distal-limb pain and microvascular dysregulation (e.g., edema or color changes) or altered sweating. CRPS-II (formerly "causalgia") describes patients with identified nerve injuries. ⋯ Investigational treatments include ketamine, botulinum toxin, immunoglobulins, and transcranial neuromodulation. Nonrecovering patients should be re-evaluated for neurosurgically treatable causal lesions (nerve entrapment, impingement, infections, or tumors) and treatable potentiating medical conditions, including polyneuropathy and circulatory insufficiency. Earlier impressions that CRPS represents malingering or psychosomatic illness have been replaced by evidence that CRPS is a rare complication of limb injury in biologically susceptible individuals.