Handbook of clinical neurology
-
Endovascular thrombectomy is an effective treatment for major acute ischemic stroke syndromes caused by major anterior circulation artery occlusions (commonly referred to as large vessel occlusion) and is superior to intravenous thrombolysis and medical management. Treatment should occur as quickly as is reasonably possible. All patients with moderate to severe symptoms (National Institutes of Health stroke scale >8) and a treatable occlusion should be considered. ⋯ Recanalization is highly effective with a stentriever or using a direct aspiration technique, with the patient awake or under conscious sedation rather than general anesthesia, if it may be performed safely. After thrombectomy the patient should be admitted to an intensive care setting and inpatient rehabilitation undertaken as soon as feasible. Patient outcomes should be assessed at 3 months, preferably using the modified Rankin score.
-
Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70-80%), particularly in patients with frontotemporal or insular lesions. ⋯ With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life.
-
Traumatic brain and spine injury (TBI/TSI) is a leading cause of death and lifelong disability in children. The biomechanical properties of the child's brain, skull, and spine, the size of the child, the age-specific activity pattern, and variance in trauma mechanisms result in a wide range of age-specific traumas and patterns of brain and spine injuries. A detailed knowledge about the various types of primary and secondary pediatric head and spine injuries is essential to better identify and understand pediatric TBI/TSI, which enhances sensitivity and specificity of diagnosis, will guide therapy, and may give important information about the prognosis. The purposes of this chapter are to: (1) discuss the unique epidemiology, mechanisms, and characteristics of TBI/TSI in children; (2) review the anatomic and functional imaging techniques that can be used to study common and rare pediatric TBI/TSI and their complications; (3) comprehensively review frequent primary and secondary brain injuries; and (4) to give a short overview of two special types of pediatric TBI/TSI: birth-related and nonaccidental injuries.
-
Hereditary and metabolic myelopathies are a heterogeneous group of neurologic disorders characterized by clinical signs suggesting spinal cord dysfunction. Spastic weakness, limb ataxia without additional cerebellar signs, impaired vibration, and positional sensation are hallmark phenotypic features of these disorders. Hereditary, and to some extent, metabolic myelopathies are now recognized as more widespread systemic processes with axonal loss and demyelination. ⋯ Neuroimaging studies usually detect a nonspecific spinal cord atrophy or demyelination of the corticospinal tracts and dorsal columns. Brain imaging can be also helpful in myelopathies caused by generalized neurodegeneration. Given the nonspecific nature of neuroimaging findings, we also review metabolic or genetic assays needed for the specific diagnosis of hereditary and metabolic myelopathies.
-
Neurosurgical intervention remains the first step in effective glioma management. Mounting evidence suggests that cytoreduction for low- and high-grade gliomas is associated with a survival benefit. ⋯ Other adjunct techniques, such as intraoperative magnetic resonance imaging, intraoperative ultrasonography, and fluorescence-guided surgery, can be valuable tools to safely reduce the tumor burden of low- and high-grade gliomas. Taken together, this collection of surgical strategies has pushed glioma extent of resection towards the level of cellular resolution.