Handbook of clinical neurology
-
Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. ⋯ We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome.
-
A neurocatastrophe or severe brain injury (SBI) is a central nervous system insult associated with a high likelihood of death or severe disability. While many etiologic processes may lead to SBI, the most common and best-studied clinical paradigms are traumatic brain injury and anoxic-ischemic encephalopathy following cardiac arrest. Clinical phenotypes following SBI include acute and chronic disorders of consciousness as well as a range of cognitive and behavioral impairments. ⋯ Yet existing scores fail to classify outcomes with the accuracy that would support individual patient-level decision making. Improved prognostication will likely depend on the use of molecular and imaging data that capture unique biologic features in individual patients with SBI. The integration of these additional layers of information will require iterative computational approaches.
-
This chapter aims to provide an up-to-date review of the science and clinical practice pertaining to neurologic injury after successful cardiopulmonary resuscitation. The past two decades have seen a major shift in the science and practice of cardiopulmonary resuscitation, with a major emphasis on postresuscitation neurologic care. ⋯ Guidance to practice evidence-based clinical care when able and thoughtful, pragmatic suggestions for care where evidence is lacking are also provided. This chapter serves as both a useful clinical guide and an updated, thorough, and state-of-the-art reference on the topic for advanced students and experienced practitioners in the field.
-
When critically ill, a severe weakness of the limbs and respiratory muscles often develops with a prolonged stay in the intensive care unit (ICU), a condition vaguely termed intensive care unit-acquired weakness (ICUAW). Many of these patients have serious nerve and muscle injury. This syndrome is most often seen in surviving critically ill patients with sepsis or extensive inflammatory response which results in increased duration of mechanical ventilation and hospital length of stay. ⋯ In this chapter we discuss the current knowledge on the pathophysiology and risk factors of ICUAW. Tools to diagnose ICUAW, how to separate ICUAW from other disorders, and which possible treatment strategies can be employed are also described. ICUAW is finally receiving the attention it deserves and the expectation is that it can be better understood and prevented.
-
Endovascular thrombectomy is an effective treatment for major acute ischemic stroke syndromes caused by major anterior circulation artery occlusions (commonly referred to as large vessel occlusion) and is superior to intravenous thrombolysis and medical management. Treatment should occur as quickly as is reasonably possible. All patients with moderate to severe symptoms (National Institutes of Health stroke scale >8) and a treatable occlusion should be considered. ⋯ Recanalization is highly effective with a stentriever or using a direct aspiration technique, with the patient awake or under conscious sedation rather than general anesthesia, if it may be performed safely. After thrombectomy the patient should be admitted to an intensive care setting and inpatient rehabilitation undertaken as soon as feasible. Patient outcomes should be assessed at 3 months, preferably using the modified Rankin score.