Handbook of clinical neurology
-
Hereditary and metabolic myelopathies are a heterogeneous group of neurologic disorders characterized by clinical signs suggesting spinal cord dysfunction. Spastic weakness, limb ataxia without additional cerebellar signs, impaired vibration, and positional sensation are hallmark phenotypic features of these disorders. Hereditary, and to some extent, metabolic myelopathies are now recognized as more widespread systemic processes with axonal loss and demyelination. ⋯ Neuroimaging studies usually detect a nonspecific spinal cord atrophy or demyelination of the corticospinal tracts and dorsal columns. Brain imaging can be also helpful in myelopathies caused by generalized neurodegeneration. Given the nonspecific nature of neuroimaging findings, we also review metabolic or genetic assays needed for the specific diagnosis of hereditary and metabolic myelopathies.
-
Traumatic brain and spine injury (TBI/TSI) is a leading cause of death and lifelong disability in children. The biomechanical properties of the child's brain, skull, and spine, the size of the child, the age-specific activity pattern, and variance in trauma mechanisms result in a wide range of age-specific traumas and patterns of brain and spine injuries. A detailed knowledge about the various types of primary and secondary pediatric head and spine injuries is essential to better identify and understand pediatric TBI/TSI, which enhances sensitivity and specificity of diagnosis, will guide therapy, and may give important information about the prognosis. The purposes of this chapter are to: (1) discuss the unique epidemiology, mechanisms, and characteristics of TBI/TSI in children; (2) review the anatomic and functional imaging techniques that can be used to study common and rare pediatric TBI/TSI and their complications; (3) comprehensively review frequent primary and secondary brain injuries; and (4) to give a short overview of two special types of pediatric TBI/TSI: birth-related and nonaccidental injuries.
-
The end-of-life (EOL) phase of patients with a glioma starts when symptom prevalence increases and antitumor treatment is no longer effective. During the EOL phase, care is primarily aimed at reducing symptom burden while maintaining quality of life as long as possible without inappropriate prolongation of life. Palliative care during the EOL phase also involves complex medical decisions for the prevention and relief of suffering. ⋯ Treating disease-specific symptoms, such as impaired consciousness, seizures, focal neurologic deficits and cognitive disturbances, is a major concern during the EOL phase, as these symptoms may interfere with EOL decision making. Advance care planning is aimed at reaching consensus about possible EOL decisions between all participants, respecting the values of patients and their informal caregivers. In order to prevent the possibility that the patient becomes incompetent to make informed decisions, we recommend initiating EOL conversations at a relatively early stage in the disease course.
-
Endovascular thrombectomy is an effective treatment for major acute ischemic stroke syndromes caused by major anterior circulation artery occlusions (commonly referred to as large vessel occlusion) and is superior to intravenous thrombolysis and medical management. Treatment should occur as quickly as is reasonably possible. All patients with moderate to severe symptoms (National Institutes of Health stroke scale >8) and a treatable occlusion should be considered. ⋯ Recanalization is highly effective with a stentriever or using a direct aspiration technique, with the patient awake or under conscious sedation rather than general anesthesia, if it may be performed safely. After thrombectomy the patient should be admitted to an intensive care setting and inpatient rehabilitation undertaken as soon as feasible. Patient outcomes should be assessed at 3 months, preferably using the modified Rankin score.
-
Primary or nontraumatic spontaneous intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes, and has a poor prognosis. ICH has a mortality rate of almost 50% when associated with intraventricular hemorrhage within the first month, and 80% rate of dependency at 6 months from onset. Neuroimaging is critical in identifying the underlying etiology and thus assisting in the important therapeutic decisions. ⋯ A review of the current imaging approach, as well as a differential diagnosis of etiologies and imaging manifestations of primary versus secondary intraparenchymal hemorrhage, is presented. Active bleeding occurs in the first hours after symptom onset, with early neurologic deterioration. Identifying those patients who are more likely to have hematoma expansion is an active area of research, and there are many ongoing therapeutic trials targeting this specific patient population at risk.