The American journal of physiology
-
Sequential glucose flux studies were carried out in five normal and six epileptic children and ten adult volunteers using [6,6-2H2]glucose to determine the effect of ketosis on carbohydrate homeostasis in children and adults. All subjects were studied after 14 and 30-38 h of fasting while consuming a normal diet and the epileptic children under 14 h of fasting while consuming an isocaloric ketogenic diet (75% fat wt/wt). ⋯ When glucose flux was corrected for estimated brain weight, the relationship between glucose flux and ketonemia was linearly related in children (P less than 0.001), in adults (P less than 0.02), and when all subjects were considered together (P less than 0.001). The inverse relationship between ketonemia and glucose flux corrected for estimated brain mass is consistent with a partial replacement of glucose by ketone bodies for cerebral metabolism and may provide a more rational means of expressing glucose flux data to take into account the higher brain-to-body ratio in children.
-
The concentration of ketone bodies and their rate of transport (estimated with an infusion of beta-[14C]-hydroxybutyrate) were determined before, during, and after exercise in overnight-fasted and 3- to 5-day-fasted subjects who walked on a treadmill for 2 h at approximately 50% of their VO2max. In overnight-fasted subjects, exercise increased the rate of turnover (+125% after 2 h) and the metabolic clearance rate of ketone bodies whose concentration rose from 0.20 to 0.39 mM. ⋯ In sharp contrast with overnight-fasted subjects, starved subjects (with a resting ketone level averaging 5.7 mM) responded to work by a decrease in the turnover rate and in the concentration of ketones, their metabolic clearance rate remaining unchanged. Thus, the response of ketogenesis and muscular ketone uptake to exercise are both markedly influenced by the initial degree of fasting ketosis.