The American journal of physiology
-
This study examined the relative roles of the right vs. left vagi in mediating the inhibitory influence of vagal sensory input on sympathetic outflow to the cardiovascular system. This objective was pursued through examination of responses to 1) interruption of tonic vagal input and 2) intracoronary administration of veratridine (Bezold-Jarisch effect). Bilateral vagal cold block (BVB) (n = 16) increased arterial pressure 25 +/- 3 mmHg and heart rate 66 +/- 7 beat/min, whereas right vagal cold block (RVB) and left vagal cold block (LVB) increased arterial pressure 13 +/- 2 and 4 +/- 2 mmHg, respectively. ⋯ During RVB the depressor effect of veratridine was reduced to -18 +/- 5 mmHg, and changes in heart rate or LV (dP/dt)max were abolished. Veratridine administration during LVB decreased arterial pressure (-39 +/- 6 mmHg), heart rate (-22 +/- 6 beat/min), and LV (dP/dt)max (-250 +/- 60 mmHg). We conclude that in the conscious dog the tonic inhibitory influence of vagal afferent nerves on vasomotor outflow is predominantly associated with the right vagus as in Bezold-Jarisch effect.
-
Renal blood flow and hemodynamic autoregulation were assessed in seven chronically instrumented canines studied in the conscious state and after pentobarbital anesthesia administration (30 mg/kg). The effects of acute arterial hemorrhage (10 and 15 ml/kg) were also studied. In the conscious state, no significant changes in autoregulation were observed following 10 mg/kg hemorrhage. ⋯ We conclude that renal blood flow is unaffected by hemorrhage or pentobarbital alone. In the conscious state, renal pressure-flow autoregulation is maintained despite moderate hemorrhage and systemic hypotension. The lower limit of autoregulation is significantly changed by even minor hemorrhage in the pentobarbital-anesthetized state.