The American journal of physiology
-
Although the antioxidant properties of N-acetylcysteine (NAC) in vitro are widely accepted, the efficacy of NAC in the prevention of O2 toxicity in vivo is poorly documented. The aim of our study was to investigate the presumed protective effect of NAC on hyperoxic lung injury, focusing on gamma-glutamyltransferase (gamma-GT) activity and glutathione (GSH) levels in lung tissue, epithelial lining fluid (ELF), and isolated rat type II cells immediately after their isolation and 48 h later when kept in culture in normoxia. Thirty-four male Wistar rats were divided in three groups (n = 10-14) and were exposed to air or to 60 or 85% O2 for 7 days. ⋯ There was increased DNA damage (as assessed by thymidine incorporation) and apoptosis after hyperoxia, especially after 60% O2, and this effect was amplified after NAC treatment. Although protective at the endothelial side, NAC treatment led to adverse effects at the epithelial side, despite, or probably because of, restoration of the ELF GSH levels in the presence of high O2 levels. Because NAC is rapidly metabolized to cysteine, it is plausible that the effects of NAC are manifested through the toxic effects of cysteine.
-
The effect of hyperoxia on gamma-glutamyltransferase (gamma-GT), an important enzyme for the uptake of precursor molecules for intracellular synthesis of glutathione (GSH), has not been established. Our aim was to investigate the effects of prolonged subtoxic levels of hyperoxia on gamma-GT activity and GSH levels in lung tissue, epithelial lining fluid (ELF), and isolated rat type II cells immediately after their isolation and 48 h later when kept in culture in normoxia. Seventeen male Wistar rats were divided in three groups (n = 5-7) and were exposed to air or to 60 or 85% O2 for 7 days. ⋯ Hyperoxia led to a concentration-dependent decrease in gamma-GT activity in rat type II cells, possibly by direct inactivation, but led to an increase in whole lung tissue gamma-GT. There seemed to be a negative feedback between intracellular GSH levels and type II cell gamma-GT activity. gamma-GT levels in the ELF were correlated with type II cell gamma-GT activity, but ELF gamma-GT did not seem to play an active role in the regulation of the ELF GSH pool. Hyperoxia decreased ELF GSH levels, possibly by increased degradation of GSH in the parenchymal lung tissue as a result of the increased gamma-GT activity.