The American journal of physiology
-
Although it is generally believed that circulating exogenous pyrogens [e.g., lipopolysaccharides (LPS)] induce fever via the mediation of endogenous pyrogens (EP) such as cytokines, the first of these, tumor necrosis factor-alpha, is usually not detectable in blood until at least 30 min after intravenous administration of LPS, whereas the febrile rise begins within 15 min after its administration. Moreover, although abundant evidence indicates that circulating LPS is cleared primarily by liver macrophages [Kupffer cells (KC)], these do not secrete EP in immediate response. This would imply that other factors, presumably evoked earlier than EP, may mediate the onset of the febrile response to intravenous LPS. ⋯ To test this postulated mechanism, we measured directly the levels of prostaglandin E2 (PGE2) in the interstitial fluid of the preoptic anterior hypothalamus (POA), the presumptive site of the fever-producing controller, of conscious guinea pigs over their entire febrile course, before and after C depletion by cobra venom factor (CVF) and before and after elimination of KC by gadolinium chloride (GdCl3). CVF and GdCl3 pretreatment each individually attenuated the first of the biphasic core temperature (Tc) rises after intravenous LPS, inverted the second into a Tc fall, and greatly reduced the usual fever-associated increase in POA PGE2. We conclude, therefore, that C activation may indeed be pivotal in the induction of fever by intravenous LPS and that substance(s) generated presumably by KC in almost immediate reaction to the presence of LPS and/or C may transmit pyrogenic signals via hepatic vagal afferents to the POA, where they rapidly induce the production of PGE2 and, hence, fever.
-
We investigated the contribution of perivascular nerves and neurotransmitters to cortical spreading depression (CSD)-associated hyperperfusion in the rat. Chronic transection of the nasociliary nerve (NCN, 2 wk before) decreased ipsilateral CSD-associated hyperperfusion by 23 +/- 13% (mean +/- SD; n = 5, P < 0.05), whereas acute transection of the NCN or sham surgery had no effect (n = 8). When the NCN and parasympathetic nerve fibers (PSN) were both chronically transected, CSD hyperperfusion was attenuated by 55 +/- 19% (n = 5, P < 0.05). ⋯ Atropine (10(-4) M) afforded a decrease by 17 +/- 6% (n = 3). These reductions were not statistically significant. We conclude that CSD-associated hyperperfusion is mediated in part by a depolarization of trigeminal sensory and parasympathetic nerve fibers, resulting in a release of vasoactive trigeminal and parasympathetic neurotransmitters.