The American journal of physiology
-
We examined if an exercise-heat acclimation program improves body fluid regulatory function in older subjects, as has been reported in younger subjects. Nine older (Old; 70 +/- 3 yr) and six younger (Young; 25 +/- 3 yr) male subjects participated in the study. Body fluid regulatory responses to an acute thermal dehydration challenge were examined before and after the 6-day acclimation session. ⋯ The greater involuntary dehydration (greater fluid deficit) in Old was accompanied by reduced plasma vasopressin and aldosterone concentrations, renin activity, and subjective thirst rating (P < 0.05, Young vs. Old). Thus older people have reduced ability to facilitate body fluid regulatory function by exercise-heat acclimation, which might be involved in attenuation of the acclimation-induced increase in body fluid volume.
-
Nociceptin, an endogenous agonist of the opioid receptor-like(1) receptor, is expressed in the hypothalamus, where it is implicated in autonomic nervous system control. However, the central actions of nociceptin on sympathetic nerve activity have not been studied. We investigated the effect of intracerebroventricularly administered nociceptin (2-10 nmol) on blood pressure, heart rate (HR), and renal sympathetic nerve activity (RSNA) in conscious rats and sinoaortic-denervated (SAD) rats. ⋯ The decrease in HR induced by nociceptin was blocked by propranolol but not by atropine, which indicates that nociceptin is acting by inhibiting cardiac sympathetic outflow. These nociceptin-induced depressor and bradycardic responses were not antagonized by pretreatment with naloxone and nocistatin. These findings suggest that central nociceptin may have a functional role in regulating cardiovascular and sympathetic nervous systems.
-
In the rat intestinal and cerebral microvasculatures, acute D-glucose hyperglycemia suppresses endothelium-dependent dilation to ACh without affecting endothelium-independent dilation to nitroprusside. This study determined whether acute hyperglycemia suppressed arteriolar wall nitric oxide concentration ([NO]) at rest or during ACh stimulation and inhibited nitroprusside-, ACh- or contraction-induced dilation of rat spinotrapezius arterioles. Vascular responses were measured before and after 1 h of topical 300 mg/100 ml D-glucose; arteriolar [NO] was measured with NO-sensitive microelectrodes. ⋯ Arteriolar dilation to submaximal nitroprusside and muscle contractions was enhanced by hyperglycemia. These results indicated that in the rat spinotrapezius muscle, acute hyperglycemia suppressed arteriolar NO production while simultaneously augmenting vascular smooth muscle responsiveness to nitroprusside, presumably through cGMP-mediated mechanisms. In effect, this may have allowed ACh- and muscle contraction-induced vasodilation to be maintained during hyperglycemia despite an impaired NO system.