The American journal of physiology
-
Late pregnant (P) conscious rabbits are less able to maintain arterial pressure during hemorrhage than nonpregnant (NP) animals. This study tested the hypothesis that the difference is due in part to less reflex vasoconstriction when the rabbits are P. Rabbits (n = 14) were instrumented with arterial and venous catheters as well as ultrasonic flow probes around the superior mesenteric, renal, and/or terminal aortic arteries. ⋯ During the pressure fall, terminal aortic conductance increased (P < 0.05) only in NP rabbits. Mesenteric conductance increased in both groups. In summary, rabbits in late gestation are less able to maintain arterial pressure during hemorrhage, at least in part because of reduced vasoconstriction in tissues perfused by the terminal aorta.
-
Nitric oxide plays an important role in modulating pulmonary vascular tone. All three isoforms of nitric oxide synthase (NOS), neuronal (nNOS, NOS I), inducible (iNOS, NOS II), and endothelial (eNOS, NOS III), are expressed in the lung. Recent reports have suggested an important role for eNOS in the modulation of pulmonary vascular tone chronically; however, the relative contribution of the three isoforms to acute modulation of pulmonary vascular tone is uncertain. ⋯ In wild-type lungs, nonselective NOS inhibition doubled HPV, whereas selective iNOS inhibition had no detectable effect. In intact, lightly sedated mice, right ventricular systolic pressure was elevated in eNOS-deficient (42.3 +/- 1.2 mmHg, P < 0.001) and, to a lesser extent, in iNOS-deficient (37.2 +/- 0.8 mmHg, P < 0.001) mice, whereas it was normal in nNOS-deficient mice (30.9 +/- 0.7 mmHg, P = not significant) compared with wild-type controls (31.3 +/- 0.7 mmHg). We conclude that in the normal murine pulmonary circulation 1) nNOS does not modulate tone, 2) eNOS-derived nitric oxide is the principle mediator of endothelium-dependent vasodilation in the pulmonary circulation, and 3) both eNOS and iNOS play a role in modulating basal tone chronically.
-
The effect of hyperoxia on nitric oxide (NO) production in intact animals is unknown. We described the effects of hyperoxia on inducible nitric oxide synthase (iNOS) expression and NO production in the lungs of rats exposed to high concentrations of oxygen. Animals were placed in sealed Plexiglas chambers and were exposed to either 85% oxygen (hyperoxic group) or 21% oxygen (negative control group). ⋯ To exclude the possibility that in the hyperoxic group NO was scavenged by oxygen radicals to form peroxynitrite, lungs were studied by immunohistochemistry for the detection of nitrotyrosine. Nitrotyrosine was found in septic shock animals but not in the hyperoxic group, further suggesting that NO is not synthesized in rats exposed to hyperoxia. We conclude that hyperoxia induces iNOS expression in the lung without an increase in NO concentration in the exhaled air.