Frontiers in psychology
-
When people see a snake, they are likely to activate both affective information (e.g., dangerous) and non-affective information about its ontological category (e.g., animal). According to the Affective Primacy Hypothesis, the affective information has priority, and its activation can precede identification of the ontological category of a stimulus. Alternatively, according to the Cognitive Primacy Hypothesis, perceivers must know what they are looking at before they can make an affective judgment about it. ⋯ Rather than seeking to resolve the debate over Cognitive vs. Affective Primacy in favor of one hypothesis or the other, a more productive goal may be to determine the factors that cause affective information to have processing priority in some circumstances and ontological information in others. Our findings support a view of the mind according to which words and pictures activate different neurocognitive representations every time they are processed, the specifics of which are co-determined by the stimuli themselves and the contexts in which they occur.
-
Frontiers in psychology · Jan 2012
Intentional suppression can lead to a reduction of memory strength: behavioral and electrophysiological findings.
Previous research has shown that the intentional suppression of unwanted memories can lead to forgetting in later memory tests. However, the mechanisms underlying this effect remain unclear. This study employed recognition memory testing and event-related potentials (ERPs) to investigate whether intentional suppression leads to the inhibition of memory representations at an item level. ⋯ Furthermore, ERPs to no-think items from 225 to 450 ms were more negative-going in later phases of the experiment, suggesting a gradual reduction of memory strength with repeated suppression attempts. These effects were dissociable from correlates of recollection (500-600 ms) and inhibitory control (450-500 ms) that did not vary over the time-course of the experiment and appeared to be under strategic control. Our results give strong evidence that the no-think manipulation involves inhibition of memory representations at an item level.
-
Frontiers in psychology · Jan 2012
Computational Grounded Cognition: a new alliance between grounded cognition and computational modeling.
Grounded theories assume that there is no central module for cognition. According to this view, all cognitive phenomena, including those considered the province of amodal cognition such as reasoning, numeric, and language processing, are ultimately grounded in (and emerge from) a variety of bodily, affective, perceptual, and motor processes. The development and expression of cognition is constrained by the embodiment of cognitive agents and various contextual factors (physical and social) in which they are immersed. ⋯ Still, there are very few explicit computational models that implement grounding in sensory, motor and affective processes as intrinsic to cognition, and demonstrate that grounded theories can mechanistically implement higher cognitive abilities. We propose a new alliance between grounded cognition and computational modeling toward a novel multidisciplinary enterprise: Computational Grounded Cognition. We clarify the defining features of this novel approach and emphasize the importance of using the methodology of Cognitive Robotics, which permits simultaneous consideration of multiple aspects of grounding, embodiment, and situatedness, showing how they constrain the development and expression of cognition.
-
Frontiers in psychology · Jan 2012
Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States.
In order to better understand the functional contribution of resting state activity to conscious cognition, we aimed to review increases and decreases in functional magnetic resonance imaging (fMRI) functional connectivity under physiological (sleep), pharmacological (anesthesia), and pathological altered states of consciousness, such as brain death, coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. The reviewed resting state networks were the DMN, left and right executive control, salience, sensorimotor, auditory, and visual networks. We highlight some methodological issues concerning resting state analyses in severely injured brains mainly in terms of hypothesis-driven seed-based correlation analysis and data-driven independent components analysis approaches. ⋯ At the clinical level, we acknowledge the technical merits of the resting state paradigm. Indeed, fast and easy acquisitions are preferable to activation paradigms in clinical populations. Finally, we emphasize the need to validate the diagnostic and prognostic value of fMRI resting state measurements in non-communicating brain damaged patients.
-
We are able to extract detailed information from mental images that we were not explicitly aware of during encoding. For example, we can discover a new figure when we rotate a previously seen image in our mind. However, such discoveries are not "really" new but just new "interpretations." In two recent publications, we have shown that mental imagery can lead to perceptual learning (Tartaglia et al., 2009, 2012). ⋯ In this sense, perceptual learning via mental imagery exceeds new discoveries in mental images. Still, the effects of mental imagery on perceptual learning are limited. Only perception can lead to really new perceptual experience.