Genomics, proteomics & bioinformatics
-
Genomics Proteomics Bioinformatics · Feb 2018
ReviewDeep Learning and Its Applications in Biomedicine.
Advances in biological and medical technologies have been providing us explosive volumes of biological and physiological data, such as medical images, electroencephalography, genomic and protein sequences. Learning from these data facilitates the understanding of human health and disease. Developed from artificial neural networks, deep learning-based algorithms show great promise in extracting features and learning patterns from complex data. ⋯ We then describe two main components of deep learning, i.e., deep learning architectures and model optimization. Subsequently, some examples are demonstrated for deep learning applications, including medical image classification, genomic sequence analysis, as well as protein structure classification and prediction. Finally, we offer our perspectives for the future directions in the field of deep learning.
-
Genomics Proteomics Bioinformatics · Oct 2016
ReviewPharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine.
The interindividual genetic variations in drug metabolizing enzymes and transporters influence the efficacy and toxicity of numerous drugs. As a fundamental element in precision medicine, pharmacogenomics, the study of responses of individuals to medication based on their genomic information, enables the evaluation of some specific genetic variants responsible for an individual's particular drug response. ⋯ The current effort illustrates the common presence of variability in drug responses among individuals and across all geographic regions. This information will aid health-care professionals in prescribing the most appropriate treatment aimed at achieving the best possible beneficial outcomes while avoiding unwanted effects for a particular patient.
-
Genomics Proteomics Bioinformatics · Jun 2014
Human pharyngeal microbiome may play a protective role in respiratory tract infections.
The human pharyngeal microbiome, which resides at the juncture of digestive and respiratory tracts, may have an active role in the prevention of respiratory tract infections, similar to the actions of the intestinal microbiome against enteric infections. Recent studies have demonstrated that the pharyngeal microbiome comprises an abundance of bacterial species that interacts with the local epithelial and immune cells, and together, they form a unique micro-ecological system. Most of the microbial species in microbiomes are obligate symbionts constantly adapting to their unique surroundings. ⋯ Temporary damage to the pharyngeal microbiome due to the impaired local epithelia is also considered an important predisposing risk factor for infections. Therefore, reinforcement of microbiome homeostasis to prevent invasion of infection-prone species would provide a novel treatment strategy in addition to antibiotic treatment and vaccination. Hence continued research efforts on evaluating probiotic treatment and developing appropriate procedures are necessary to both prevent and treat respiratory infections.
-
Genomics Proteomics Bioinformatics · Jun 2013
ReviewA brief review on the Human Encyclopedia of DNA Elements (ENCODE) project.
The ENCyclopedia Of DNA Elements (ENCODE) project is an international research consortium that aims to identify all functional elements in the human genome sequence. The second phase of the project comprised 1640 datasets from 147 different cell types, yielding a set of 30 publications across several journals. ⋯ These elements are also related to sequence variants associated with diseases or traits. All these findings provide us new insights into the organization and regulation of genes and genome, and serve as an expansive resource for understanding human health and disease.