Clinical and experimental pharmacology & physiology
-
Clin. Exp. Pharmacol. Physiol. · Feb 2013
ReviewHaemodynamic influences on kidney oxygenation: clinical implications of integrative physiology.
Renal blood flow, local tissue perfusion and blood oxygen content are the major determinants of oxygen delivery to kidney tissue. Arterial pressure and segmental vascular resistance influence kidney oxygen consumption through effects on glomerular filtration rate and sodium reabsorption. Diffusive shunting of oxygen from arteries to veins in the cortex and from descending to ascending vasa recta in the medulla limits oxygen delivery to renal tissue. ⋯ This sequence of events appears to cause renal microcirculatory dysfunction, which may then be exacerbated by the inappropriate use of therapies common in peri-operative medicine, such as fluid resuscitation. The development of new ways to prevent and treat AKI requires an integrative approach that considers not just the molecular mechanisms underlying failure of filtration and tissue damage, but also the contribution of haemodynamic factors that determine kidney oxygenation. The development of bedside monitors allowing continuous surveillance of renal haemodynamics, oxygenation and function should facilitate better prevention, detection and treatment of AKI.