Clinical and experimental pharmacology & physiology
-
Clin. Exp. Pharmacol. Physiol. · Jan 2011
Comparative StudyCytochrome P450 2J3/epoxyeicosatrienoic acids mediate the cardioprotection induced by ischaemic post-conditioning, but not preconditioning, in the rat.
1. Cytochrome P450 (CYP) epoxygenases and their arachidonic acid metabolites play a protective role against ischaemia-reperfusion injury. In the present study, we investigated whether endogenous CYP2J3/epoxyeicosatrienoic acid (EET) mediates the cardioprotective effects of ischaemic preconditioning (IPC) and ischaemic post-conditioning (IPost). 2. ⋯ Interestingly, IPost, but not IPC, significantly increased CYP2J3 mRNA (1.75 ± 0.22 vs 1.0; P < 0.05) and protein (1.62 ± 0.22 vs 1.0; P < 0.05), as well as 11,12-EET synthesis compared to I/R (6.2 ± 0.2 vs 2.9 ± 0.2 ng/mg wet weight, respectively; P < 0.01). Administration of MS-PPOH before ischaemia significantly decreased 11,12-EET synthesis in both IPC and IPost compared with I/R rats (2.1 ± 0.2, 3.2 ± 0.3 and 2.9 ± 0.2 ng/mg wet weight, respectively; P < 0.01), but decreased the cardioprotective effects, as evidenced by cardiac function and myocardial infarct size, of IPost only. 4. These data indicate that endogenous activation of CYP2J3/EET may be an essential trigger leading to the protective effects of IPost, but not IPC, in the rat heart.
-
Clin. Exp. Pharmacol. Physiol. · Jan 2011
Clinical TrialAssociation between brachial-ankle pulse wave velocity and endothelium-dependent and -independent coronary vasomotor function.
1. Coronary endothelial function and brachial-ankle pulse wave velocity (baPWV) are independent predictors of cardiovascular events. Thus, in the present study we examined the relationship between baPWV and endothelium-dependent and -independent coronary vasodilatory functions. 2. ⋯ Multivariate analysis revealed diabetes to be independently and significantly associated with baPWV, BK-induced Δ%CBF and Δ%CoD and Pa-induced Δ%CBF. 5. In conclusion, the results of the present study suggest that increased baPWV is associated with endothelium-dependent and -independent coronary vasodilatory dysfunction. Non-invasive and straightforward baPWV measurement may be useful for the assessment of coronary risk factors, particularly in diabetic patients.
-
Clin. Exp. Pharmacol. Physiol. · Dec 2010
Role of Ras-related C3 botulinum toxin substrate 2 (Rac2), NADPH oxidase and reactive oxygen species in diallyl disulphide-induced apoptosis of human leukaemia HL-60 cells.
1. Diallyl disulphide (DADS) has potential as a chemopreventive and therapeutic agent. Previous studies have reported that Ras-related C3 botulinum toxin substrate 2 (Rac2), a regulatory subunit of the NADPH oxidase complex, is upregulated in DADS-induced apoptosis in human leukaemia HL-60 cells. ⋯ These results demonstrate that NADPH oxidase is the main source of DADS-induced ROS. In addition, Rac2 selectively activates the c-Jun N-terminal kinase pathway, but not the p38 pathway, in DADS-induced apoptosis. So, Rac2, NADPH oxidase and ROS have a critical role in DADS-induced apoptosis in human leukaemia HL-60 cells.
-
Clin. Exp. Pharmacol. Physiol. · Oct 2010
Comparative StudyEvidence for suppression of spinal glial activation by dexmedetomidine in a rat model of monoarthritis.
1. Spinal glial cells play a key role in developing and maintaining allodynia and hyperalgesia following tissue inflammation. Dexmedetomidine, a highly selective α(2) -adrenoceptor (α(2) -AR) agonist, has exhibited a significant analgesic effect in various rodent models of chronic pain. ⋯ Monoarthritis-induced spinal glial activation was also suppressed following dexmedetomidine application. The α(2A) -AR, essential for the antinociceptive effects of α(2) -AR agonists, was detected in spinal neurons and glia, as well as in dorsal root ganglion primary afferent neurons, which may be implicated in dexmedetomidine-induced suppression of spinal glial activation and antihyperalgesic effects. 3. These data provide the first evidence that blocking spinal glial activation is involved in the analgesic action of dexmedetomidine.
-
Clin. Exp. Pharmacol. Physiol. · Sep 2010
Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock.
1. Oxidative stress induced by reactive oxygen species (ROS) is a key mediator of haemorrhagic shock (HS)-induced vascular hyperpermeability. In the present study, curcumin, a natural anti-oxidant obtained from turmeric (Curcuma longa), was tested against HS-induced hyperpermeability and associated ROS formation in rat mesenteric post-capillary venules in vivo and in rat lung microvascular endothelial cells (RLMEC) in vitro. 2. ⋯ Curcumin (10 micromol/L) attenuated HS serum-induced monolayer hyperpermeability and ROS formation. Curcumin (2-100 micromol/L) scavenged 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 1,1-diphenyl-2-picrylhydrazyl radicals in vitro, indicating its potential as a free radical scavenger. 4. The present study demonstrates that curcumin is an inhibitor of vascular hyperpermeability following HS, with its protective effects mediated through its anti-oxidant properties.