Frontiers in behavioral neuroscience
-
Front Behav Neurosci · Jan 2012
Reinstatement of extinguished fear by an unextinguished conditional stimulus.
Anxiety disorders are often treated using extinction-based exposure therapy, but relapse is common and can occur as a result of reinstatement, whereby an aversive "trigger" can reinstate extinguished fear. Animal models of reinstatement commonly utilize a Pavlovian fear conditioning procedure, in which subjects are first trained to fear a conditional stimulus (CS) by pairing it with an aversive unconditional stimulus (US), and then extinguished by repeated presentations of the CS alone. Reinstatement is typically induced by exposing subjects to an aversive US after extinction, but here we show that exposure to a non-extinguished CS can reinstate conditional fear responding to an extinguished CS, a phenomenon we refer to as "conditional reinstatement" (CRI). ⋯ Presenting the unextinguished CS (but not a novel cue) immediately after extinction reinstated conditional fear responding to the extinguished CS in a test session given 24 h later. These findings indicate that reinstatement of extinguished fear can be triggered by exposure to conditional as well as unconditional aversive stimuli, and this may help to explain why relapse is common following clinical extinction therapy in humans. Further study of CRI using animal models may prove useful for developing refined extinction therapies that are more resistant to reinstatement.
-
Front Behav Neurosci · Jan 2012
Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices.
Over the last two decades, a vast literature has described the influence of neuromodulatory systems on the responses of sensory cortex neurons (review in Gu, 2002; Edeline, 2003; Weinberger, 2003; Metherate, 2004, 2011). At the single cell level, facilitation of evoked responses, increases in signal-to-noise ratio, and improved functional properties of sensory cortex neurons have been reported in the visual, auditory, and somatosensory modality. At the map level, massive cortical reorganizations have been described when repeated activation of a neuromodulatory system are associated with a particular sensory stimulus. ⋯ More importantly, a gap still exists between the descriptions of neuromodulatory effects and the concepts that are currently applied to decipher the neural code operating in sensory cortices. Key examples that bring this gap into focus are the concept of cell assemblies and the role played by the spike timing precision (i.e., by the temporal organization of spike trains at the millisecond time-scale) which are now recognized as essential in sensory physiology but are rarely considered in experiments describing the role of neuromodulators in sensory cortices. Thus, I will suggest that several lines of research, particularly in the field of computational neurosciences, should help us to go beyond traditional approaches and, ultimately, to understand how neuromodulators impact on the cortical mechanisms underlying our perceptual abilities.