Frontiers in behavioral neuroscience
-
Front Behav Neurosci · Jan 2016
Comparison of Burrowing and Stimuli-Evoked Pain Behaviors as End-Points in Rat Models of Inflammatory Pain and Peripheral Neuropathic Pain.
Establishment and validation of ethologically-relevant, non-evoked behavioral end-points as surrogate measures of spontaneous pain in rodent pain models has been proposed as a means to improve preclinical to clinical research translation in the pain field. Here, we compared the utility of burrowing behavior with hypersensitivity to applied mechanical stimuli for pain assessment in rat models of chronic inflammatory and peripheral neuropathic pain. Briefly, groups of male Sprague-Dawley rats were habituated to the burrowing environment and trained over a 5-day period. ⋯ By contrast, mechanical hyperalgesia and mechanical allodynia in the ipsilateral hindpaws of FCA- and CCI-rats respectively, exhibited minimal inter-animal variability. Our data collectively show that burrowing behavior is altered in rodent models of chronic inflammatory pain and peripheral neuropathic pain. However, large group sizes are needed to ensure studies are adequately powered due to considerable inter-animal variability.
-
Front Behav Neurosci · Jan 2016
Single Neurons in the Insular Cortex of a Macaque Monkey Respond to Skin Brushing: Preliminary Data of the Possible Representation of Pleasant Touch.
Pleasant touch may serve as a foundation for affiliative behavior, providing a mechanism for the formation and maintenance of social bonds among conspecifics. In humans, this touch is usually referred to as the caress. Dynamic caressing performed on the hairy skin with a velocity of 1-10 cm/s is perceived as being pleasant and determines positive cardio-physiological effects. ⋯ In particular, even the majority of recorded somatosensory neurons (82.96%) did not discriminate the two speeds, a small set of neurons (16.59%) were modulated just during the sweep fast. These findings represent the first evidence that single neurons of the non-human primates insular cortex can code affiliative touch, highlighting the similarity between human and non-human primates' social touch systems. This study constitutes an important starting point to carry out deeper investigation on neuronal processing of pleasant sweeping in the central nervous system.