Molecular therapy : the journal of the American Society of Gene Therapy
-
Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (ALS) resulting in progressive motor neuron death through one or more acquired toxicities. Involvement of wild-type SOD1 has been linked to sporadic ALS, as misfolded SOD1 has been reported in affected tissues of sporadic patients and toxicity of astrocytes derived from sporadic ALS patients to motor neurons has been reported to be reduced by lowering the synthesis of SOD1. ⋯ In a later-onset model, AAV9 delivery after onset markedly slowed disease progression and significantly extended survival. Moreover, AAV9 delivered intrathecally to nonhuman primates is demonstrated to yield robust SOD1 suppression in motor neurons and glia throughout the spinal cord and therefore, setting the stage for AAV9-mediated therapy in human clinical trials.
-
Complement factor C5a is a potent proinflammatory mediator that contributes to the pathogenesis of numerous inflammatory diseases. Here, we describe the discovery of NOX-D20, a PEGylated biostable mirror-image mixed (l-)RNA/DNA aptamer (Spiegelmer) that binds to mouse and human C5a with picomolar affinity. In vitro, NOX-D20 inhibited C5a-induced chemotaxis of a CD88-expressing cell line and efficiently antagonized the activation of primary human polymorphonuclear leukocytes (PMN) by C5a. ⋯ In sepsis, for which a specific interventional therapy is currently lacking, complement activation and elevated levels of C5a are suggested to contribute to multiorgan failure and mortality. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), NOX-D20 attenuated inflammation and organ damage, prevented the breakdown of the vascular endothelial barrier, and improved survival. Our study suggests NOX-D20 as a new therapeutic candidate for the treatment of sepsis.
-
Neuropathic pain is a chronic condition that is often refractory to treatment with available therapies and thus an unmet medical need. We have previously shown that the voltage-gated sodium channel Na(v)1.3 is upregulated in peripheral and central nervous system (CNS) of rats following nerve injury, and that it contributes to nociceptive neuron hyperexcitability in neuropathic conditions. ⋯ We show that knockdown of Na(v)1.3 in lumbar 4 (L4) DRG results in an attenuation of nerve injury-induced mechanical allodynia in the SNI model. Taken together, our studies support the contribution of peripheral Na(v)1.3 to pain in adult rats with neuropathic pain, validate Na(v)1.3 as a target, and provide validation for this approach of AAV-mediated peripheral gene therapy.
-
Despite the therapeutic potential of nucleic acid drugs, their clinical application has been limited in part by a lack of appropriate delivery systems. Exosomes or microvesicles are small endosomally derived vesicles that are secreted by a variety of cell types and tissues. ⋯ Intravenously injected exosomes delivered let-7a miRNA to EGFR-expressing xenograft breast cancer tissue in RAG2(-/-) mice. Our results suggest that exosomes can be used therapeutically to target EGFR-expressing cancerous tissues with nucleic acid drugs.