Molecular therapy : the journal of the American Society of Gene Therapy
-
Review
Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic.
The single mutation underlying the fatal neuropathology of Huntington's disease (HD) is a CAG triplet expansion in exon 1 of the huntingtin (HTT) gene, which gives rise to a toxic mutant HTT protein. There have been a number of not yet successful therapeutic advances in the treatment of HD. The current excitement in the HD field is due to the recent development of therapies targeting the culprit of HD either at the DNA or RNA level to reduce the overall mutant HTT protein. ⋯ We outline the outcome measures for the miRNA-based HTT-lowering therapy in the context of preclinical evaluation in HD animal and cell models. We highlight the strengths and ongoing queries of the HTT-lowering gene therapy as an HD intervention with a potential disease-modifying effect. This review provides a perspective on the fast-developing HTT-lowering therapies for HD and their translation to the clinic based on existing knowledge in preclinical models.
-
The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. While chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against hematological malignancies with striking clinical results, studies of CAR-modified natural killer (NK) cells have been largely preclinical. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as effective as T cells in recognizing and killing targets after genetic modification. ⋯ CAR-NK cells hold great promise as a novel cellular immunotherapy against refractory malignancies. Notably, NK cells can provide an "off-the-shelf" product, eliminating the need for a personalized and patient-specific product that plagues current CAR-T cell therapies. The ability to more potently direct NK cell-mediated cytotoxicity against refractory tumors through the expression of CAR is likely to contribute to the recent paradigm shift in cancer treatment.
-
β-Thalassemia and sickle cell disease (SCD) are the world's two most widely disseminated hereditary hemoglobinopathies. β-Thalassemia originated in the Mediterranean, Middle Eastern, and Asian regions, and SCD originated in central Africa. However, subsequent population migration means that these two diseases are now global and thus constitute a growing health problem in many countries. ⋯ The huge ongoing efforts in translational medicine and the high number of related publications show that gene therapy has the potential to become the treatment of choice for patients who lack either an HLA genoidentical sibling or an alternative, medically acceptable donor. In this dynamic scientific context, we first summarize the main steps toward clinical translation of this therapeutic approach and then discuss novel lentiviral- and genome editing-based treatment strategies for β-hemoglobinopathies.
-
Review Historical Article
Progress toward Gene Therapy for Duchenne Muscular Dystrophy.
Duchenne muscular dystrophy (DMD) has been a major target for gene therapy development for nearly 30 years. DMD is among the most common genetic diseases, and isolation of the defective gene (DMD, or dystrophin) was a landmark discovery, as it was the first time a human disease gene had been cloned without knowledge of the protein product. Despite tremendous obstacles, including the enormous size of the gene and the large volume of muscle tissue in the human body, efforts to devise a treatment based on gene replacement have advanced steadily through the combined efforts of dozens of labs and patient advocacy groups. Progress in the development of DMD gene therapy has been well documented in Molecular Therapy over the past 20 years and will be reviewed here to highlight prospects for success in the imminent human clinical trials planned by several groups.
-
A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below.