Virology
-
Several small animal models have been developed for the study of severe acute respiratory syndrome coronavirus (SARS-CoV) replication and pathogenesis. Syrian golden hamsters are among the best small animal models, though little clinical illness and no mortality are observed after virus infection. ⋯ Infection with recombinant SARS-CoV viruses bearing disruptions in the gene 7 coding region showed no significant change in replication kinetics, tissue tropism, morbidity, or mortality suggesting that the ORF7a (7a) and ORF7b (7b) proteins are not required for virus replication in immunosuppressed hamsters. This modified hamster model may provide a useful tool for SARS-CoV pathogenesis studies, evaluation of antiviral therapy, and analysis of additional SARS-CoV mutants.
-
The increasing number of recent outbreaks of HPAI H5N1 in birds and humans brings out an urgent need to develop potent H5N1 vaccine regimens. Here we present a study on the intranasal vaccination of recombinant baculovirus surface-displayed hemagglutinin (BacHA) or inactivated whole H5N1 viral (IWV) vaccine with a recombinant cholera toxin B subunit (rCTB) as a mucosal adjuvant in a BALB/c mouse model. Two groups of mice were vaccinated with different doses (HA titer of log 2(4) or log 2(8)) of either HA surface-displayed baculovirus or inactivated whole viral vaccine virus adjuvanted with different doses (2 mug or 10 mug) of rCTB. ⋯ The host challenge study also showed that 10 mug rCTB combined with log 2(8) HA titer of BacHA provided 100% protection against 10MLD(50) of homologous and heterologous H5N1 strains. The study shows that the combination of rH5 HA expressed on baculovirus surface and rCTB mucosal adjuvant form an effective mucosal vaccine against H5N1 infection. This baculovirus surface-displayed vaccine is more efficacious than inactivated H5N1 influenza vaccine when administered by intranasal route and has no biosafety concerns associated with isolation, purification and production of the latter vaccine.