Virology
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into the human population in late 2019 and caused the global COVID-19 pandemic. SARS-CoV-2 has spread to more than 215 countries and infected many millions of people. Despite the introduction of numerous governmental and public health measures to control disease spread, infections continue at an unabated pace, suggesting that effective vaccines and antiviral drugs will be required to curtail disease, end the pandemic, and restore societal norms. Here, we review the current developments in antibody and vaccine countermeasures to limit or prevent disease.
-
Comparative Study
The G614 pandemic SARS-CoV-2 variant is not more pathogenic than the original D614 form in adult Syrian hamsters.
Dynamic tracking of variant frequencies among viruses circulating in the global pandemic has revealed the emergence and dominance of a D614G mutation in the SARS-CoV-2 spike protein. To address whether pandemic SARS-CoV-2 G614 variant has evolved to become more pathogenic, we infected adult hamsters (>10 months old) with two natural SARS-CoV-2 variants carrying either D614 or G614 spike protein to mimic infection of the adult/elderly human population. Hamsters infected by the two variants exhibited comparable viral loads and pathology in lung tissues as well as similar amounts of virus shed in nasal washes. Altogether, our study does not find that naturally circulating D614 and G614 SARS-CoV-2 variants differ significantly in pathogenicity in hamsters.
-
SARS-CoV-2 is a novel coronavirus and the cause of COVID-19. More than 80% of COVID-19 patients exhibit mild or moderate symptoms. In this study, we investigated the dynamics of viral load and antibodies against SARS-CoV-2 in a longitudinal cohort of COVID-19 patients with severe and mild/moderate diseases. ⋯ Our results indicate rapid clearance or self-elimination of viral RNA in about half of the COVID-19 patients upon admission. Viral RNA shedding of SARS-CoV-2 occurred in multiple tissues including the respiratory system, blood, and intestine. Variable levels of specific anti-SARS-CoV-2 antibody may be associated with disease severity. These findings have shed light on viral kinetics and antibody response in COVID-19 patients and provide scientific evidence for infection control and patient management.
-
Novel coronavirus SARS-CoV-2, designated as COVID-19 by the World Health Organization (WHO) on the February 11, 2020, is one of the highly pathogenic β-coronaviruses which infects human. Early diagnosis of COVID-19 is the most critical step to treat infection. The diagnostic tools are generally molecular methods, serology and viral culture. ⋯ In severe hypoxaemia, a combination of antibiotics, α-interferon, lopinavir and mechanical ventilation can effectively mitigate the symptoms. Comprehensive knowledge on the innate and adaptive immune responses, will make it possible to propose potent antiviral drugs with their effective therapeutic measures for the prevention of viral infection. This therapeutic strategy will help patients worldwide to protect themselves against severe and fatal viral infections, that potentially can evolve and develop drug resistance, and to reduce mortality rates.
-
The world is in the midst of a pandemic caused by a novel coronavirus and is desperately searching for possible treatments. The antiviral remdesivir has shown some effectiveness against SARS-CoV-2 in vitro and in a recent animal study. ⋯ We find statistically significant differences in the viral decay rate and use this to inform a possible mathematical formulation of the effect of remdesivir. Unfortunately, this model formulation suggests that the application of remdesivir will lengthen SARS-CoV-2 infections, putting into question its potential clinical benefit.