American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Jul 2019
Microvascular ion transport through endothelial glycocalyx layer: new mechanism and improved Starling principle.
Ion transport through the endothelial glycocalyx layer is closely associated with many vascular diseases. Clarification of ion behaviors around the endothelial glycocalyx layer under varying circumstances will benefit pathologies related to cardiovascular and renal diseases. In this research, a series of large-scale molecular dynamics simulations are conducted to study the response of ion transport to the changing blood flow velocity and the shedding of endothelial glycocalyx sugar chains. ⋯ The Starling principle and its revisions are at the heart of the understanding of fluid homeostasis in the periphery. Here, the blood flow changes the conformations of glycocalyx sugar chains, thereby influencing availability of Na+ for transport. Based on the findings, the Starling principle and its revision are further improved.
-
Am. J. Physiol. Heart Circ. Physiol. · May 2019
Pulmonary vascular mechanical consequences of ischemic heart failure and implications for right ventricular function.
Left heart failure (LHF) is the most common cause of pulmonary hypertension, which confers an increase in morbidity and mortality in this context. Pulmonary vascular resistance has prognostic value in LHF, but otherwise the mechanical consequences of LHF for the pulmonary vasculature and right ventricle (RV) remain unknown. We sought to investigate mechanical mechanisms of pulmonary vascular and RV dysfunction in a rodent model of LHF to address the knowledge gaps in understanding disease pathophysiology. ⋯ NEW & NOTEWORTHY In this study, we investigate the mechanical consequences of left heart failure with reduced ejection fraction for the pulmonary vasculature and right ventricle. Using comprehensive functional analyses of the cardiopulmonary system in vivo and ex vivo, we demonstrate that pulmonary fibrosis contributes to increased RV afterload and loss of RV contractility contributes to RV dysfunction. Thus this model recapitulates key pathologic features of human pulmonary hypertension-left heart failure and offers a robust platform for future investigations.
-
Am. J. Physiol. Heart Circ. Physiol. · May 2019
Comparative StudyAngiotensin II-induced hypertension and cardiac hypertrophy are differentially mediated by TLR3- and TLR4-dependent pathways.
Toll-like receptors (TLR) are key components of the innate immune system that elicit inflammatory responses through the adaptor proteins myeloid differentiation protein 88 (MyD88) and Toll-interleukin receptor domain-containing adaptor protein-inducing interferon-β (TRIF). Previously, we demonstrated that TRIF mediates the signaling of angiotensin II (ANG II)- induced hypertension and cardiac hypertrophy. Since TRIF is activated selectively by TLR3 and TLR4, our goals in this study were to determine the roles of TLR3 and TLR4 in mediating ANG II-induced hypertension and cardiac hypertrophy, and associated changes in proinflammatory gene expression in heart and kidney. ⋯ However, ANG II-induced cardiac hypertrophy is regulated by both TLR4-TRIF and TLR3-TRIF pathways. Thus, ANG II-induced rise in systolic blood pressure is independent of TLR4-TRIF effect on cardiac hypertrophy. The TLR3-TRIF pathway may be a potential target of therapeutic intervention.
-
Am. J. Physiol. Heart Circ. Physiol. · Mar 2019
Phosphodiesterase-4 inhibition reduces ECLS-induced vascular permeability and improves microcirculation in a rodent model of extracorporeal resuscitation.
Extracorporeal circulation can be accompanied by increased vascular permeability leading to pathological fluid balance and organ dysfunction. The second messenger cAMP is involved in capillary permeability and maintains endothelial integrity. The aim of the present study was to evaluate the effect of phosphodiesterase-4 (PDE4) inhibition with rolipram on extracorporeal circulation-induced capillary leakage, microcirculatory dysfunction, and organ injury in rodents. ⋯ Here, we report that phosphodiesterase-4 inhibition targeting endothelial cAMP is capable of reducing microvascular complications in a rodent model of extracorporeal resuscitation. Microcirculation and vascular permeability are influenced without targeting extracorporeal circulation-induced inflammation. Thus, pulmonary and renal organ protection may be conferred.
-
Am. J. Physiol. Heart Circ. Physiol. · Dec 2018
Altered biventricular hemodynamic forces in patients with repaired tetralogy of Fallot and right ventricular volume overload because of pulmonary regurgitation.
Intracardiac hemodynamic forces have been proposed to influence remodeling and be a marker of ventricular dysfunction. We aimed to quantify the hemodynamic forces in patients with repaired tetralogy of Fallot (rToF) to further understand the pathophysiological mechanisms as this could be a potential marker for pulmonary valve replacement (PVR) in these patients. Patients with rToF and pulmonary regurgitation (PR) > 20% ( n = 18) and healthy control subjects ( n = 15) underwent MRI, including four-dimensional flow. ⋯ Left ventricular hemodynamic forces were less aligned to the main blood flow direction in patients compared with control subjects. Higher right ventricular forces were seen along the pulmonary regurgitant and tricuspid inflow directions. Differences in forces versus control subjects remain after pulmonary valve replacement, suggesting that altered biventricular pumping does not normalize after surgery.