American journal of physiology. Heart and circulatory physiology
-
Am. J. Physiol. Heart Circ. Physiol. · Dec 2005
Comparative StudyActive metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy.
We have shown previously that the glucagon-like peptide-1 (GLP-1)-(7-36) amide increases myocardial glucose uptake and improves left ventricular (LV) and systemic hemodynamics in both conscious dogs with pacing-induced dilated cardiomyopathy (DCM) and humans with LV systolic dysfunction after acute myocardial infarction. However, GLP-1-(7-36) is rapidly degraded in the plasma to GLP-1-(9-36) by dipeptidyl peptidase IV (DPP IV), raising the issue of which peptide is the active moiety. By way of methodology, we compared the efficacy of a 48-h continuous intravenous infusion of GLP-1-(7-36) (1.5 pmol.kg(-1).min(-1)) to GLP-1-(9-36) (1.5 pmol.kg(-1).min(-1)) in 28 conscious, chronically instrumented dogs with pacing-induced DCM by measuring LV function and transmyocardial substrate uptake under basal and insulin-stimulated conditions using hyperinsulinemic-euglycemic clamps. ⋯ During the GLP-1-(9-36) infusion, negligible active (NH2-terminal) peptide was measured in the plasma. In conclusion, in DCM, GLP-1-(9-36) mimics the effects of GLP-1-(7-36) in stimulating myocardial glucose uptake and improving LV and systemic hemodynamics through insulinomimetic as opposed to insulinotropic effects. These data suggest that GLP-1-(9-36) amide is an active peptide.
-
Am. J. Physiol. Heart Circ. Physiol. · Dec 2005
Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays.
This study was designed to test the feasibility of using microfabricated electrodes to record surface potentials with sufficiently fine spatial resolution to measure the potential gradients necessary for improved computation of transmembrane current density. To assess that feasibility, we recorded unipolar electrograms from perfused rabbit right ventricular free wall epicardium (n = 6) using electrode arrays that included 25-microm sensors fabricated onto a flexible substrate with 75-microm interelectrode spacing. Electrode spacing was therefore on the size scale of an individual myocyte. ⋯ Simulations incorporating a bidomain representation of tissue structure and a two-dimensional network of guinea pig myocytes prescribed following the Luo and Rudy dynamic membrane equations were completed using 12.5-microm spatial resolution to assess contributions of electrode spacing to the potential gradient and SL measurements. In those simulations, increases in electrode separation from 12.5 to 75.0, 237.5, and 875.0 microm, which were separations comparable to the finest available with our microfabricated, fine wire, and coarse wire arrays, led to 10%, 42%, and 81% reductions in maximum potential gradients and 33%, 76%, and 96% reductions in peak-to-peak SLs. Maintenance of comparable SNRs for source electrograms was therefore important because microfabrication provides a highly attractive methods to achieve spatial resolutions necessary for improved computation of transmembrane current density.
-
Am. J. Physiol. Heart Circ. Physiol. · Dec 2005
Clinical TrialEffect of skin surface cooling on central venous pressure during orthostatic challenge.
Orthostatic stress leads to a reduction in central venous pressure (CVP), which is an index of cardiac preload. Skin surface cooling has been shown to improve orthostatic tolerance, although the mechanism resulting in this outcome is unclear. One possible mechanism may be that skin surface cooling attenuates the drop in CVP during an orthostatic challenge, thereby preserving cardiac filling. ⋯ Although progressive LBNP decreased CVP under both thermal conditions, during cooling CVP at each stage of LBNP was significantly greater relative to normothermia. Moreover, at higher levels of LBNP with skin cooling, stroke volume was significantly greater relative to normothermic conditions. These data indicate that skin surface cooling induced an upward shift in CVP throughout LBNP, which may be a key factor for preserving preload, stroke volume, and blood pressure and improving orthostatic tolerance.
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2005
Myocardial perfusion reserve in adults with cyanotic congenital heart disease.
In patients with cyanotic congenital heart disease (CCHD), a right-to-left shunt results in systemic hypoxemia. Systemic hypoxemia incites a compensatory erythrocytosis, which increases whole blood viscosity. We considered that these changes might adversely influence myocardial perfusion in CCHD patients. ⋯ Calculated oxygen delivery relative to rate-pressure product was higher in the patients [2.2 (SD 0.8) vs. 1.6 (SD 0.4) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the LV, P < 0.05, and 2.0 (SD 0.7) vs. 1.4 (SD 0.3) x 10(-5) ml O2 x min(-1) x g tissue(-1) x (beats x mmHg)(-1) in the septum, P < 0.01]. Hyperemic perfusion measurements in CCHD patients did not differ from controls [LV, 1.67 (SD 0.60) vs. 1.95 ml x min(-1) x g(-1) (SD 0.46); septum, 1.44 (SD 0.56) vs. 1.98 ml x min(-1) x g(-1) (SD 0.69); RV, 1.56 (SD 0.56) vs. 1.65 ml x min(-1) x g(-1) (SD 0.64), P = not significant], and coronary vascular resistances were comparable [LV, 55 (SD 25) vs. 48 mmHg x ml(-1) x g x min (SD 16); septum, 67 (SD 35) vs. 50 mmHg x ml(-1) x g x min (SD 21); RV, 59 (SD 26) vs. 61 mmHg x ml(-1) x g x min (SD 27), P = not significant]. These findings suggest that adult CCHD patients have remodeling of the coronary circulation to compensate for the rheologic changes attending chronic hypoxemia.
-
Am. J. Physiol. Heart Circ. Physiol. · Nov 2005
Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts.
Atrial natriuretic peptide (ANP) is reported to enhance vascular permeability in vivo. Our aim was to evaluate the impact of ANP on coronary extravasation of fluids and macromolecules and on the integrity of the endothelial glycocalyx. Isolated guinea pig hearts (n = 6/group) were perfused with Krebs-Henseleit buffer in a Langendorff mode. ⋯ These results indicate that the endothelial glycocalyx serves as a barrier to transmural exchange of fluid and colloid in the coronary vascular system. ANP causes rapid shedding of individual components of the glycocalyx and histologically detectable degradation. Thus the permeability-increasing effect of ANP may be at least partially related to changes in the integrity of the endothelial glycocalyx.