American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2007
Comparative StudyHypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells.
Acute hypoxia causes pulmonary vasoconstriction and coronary vasodilation. The divergent effects of hypoxia on pulmonary and coronary vascular smooth muscle cells suggest that the mechanisms involved in oxygen sensing and downstream effectors are different in these two types of cells. Since production of reactive oxygen species (ROS) is regulated by oxygen tension, ROS have been hypothesized to be a signaling mechanism in hypoxia-induced pulmonary vasoconstriction and vascular remodeling. ⋯ Furthermore, chronic treatment with endothelin-1, a potent vasoconstrictor and mitogen, caused a significant increase in ROS production in both PASMC and CASMC. The inhibitory effect of acute hypoxia on ROS production in PASMC was also accelerated in cells chronically treated with endothelin-1. While the decreased ROS in PASMC and CASMC after acute exposure to hypoxia may reflect the lower level of oxygen substrate available for ROS production, the increased ROS production in PASMC during chronic hypoxia may reflect a pathophysiological response unique to the pulmonary vasculature that contributes to the development of pulmonary vascular remodeling in patients with hypoxia-associated pulmonary hypertension.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2007
Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema.
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. ⋯ Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Aug 2007
Induction of cell cycle arrest and apoptosis by BCG infection in cultured human bronchial airway epithelial cells.
Bronchial airway epithelial cells (BAEpC) are among the first cells to encounter M. tuberculosis following airborne infection. However, the response of BAEpC to M. tuberculosis infection has been little studied. This study investigates the response of a human BAEpC cell line (BEAS-2B) to infection with Mycobacterium bovis Bacille Calmette Guerin (BCG). ⋯ Partial blockade of Fas or FADD expression results in a decreased apoptotic response to BCG infection. In conclusion, BCG induces cell cycle arrest and apoptosis in BEAS-2B cells. BCG induced apoptosis of BEAS-2B cells via the Fas death receptor pathway.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jul 2007
Proinflammatory response of alveolar epithelial cells is enhanced by alveolar macrophage-produced TNF-alpha during pulmonary ischemia-reperfusion injury.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. ⋯ Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jul 2007
Phosphoinositide 3-kinase, Src, and Akt modulate acute ventilation-induced vascular permeability increases in mouse lungs.
To determine the role of phosphoinositide 3-OH kinase (PI3K) pathways in the acute vascular permeability increase associated with ventilator-induced lung injury, we ventilated isolated perfused lungs and intact C57BL/6 mice with low and high peak inflation pressures (PIP). In isolated lungs, filtration coefficients (K(f)) increased significantly after ventilation at 30 cmH(2)O (high PIP) for successive periods of 15, 30 (4.1-fold), and 50 (5.4-fold) min. Pretreatment with 50 microM of the PI3K inhibitor, LY-294002, or 20 microM PP2, a Src kinase inhibitor, significantly attenuated the increase in K(f), whereas 10 microM Akt inhibitor IV significantly augmented the increased K(f). ⋯ Ventilation of intact mice with 55 cmH(2)O PIP for up to 60 min also increased lung vascular permeability, indicated by increases in lung lavage albumin concentration and lung W/D ratios. In these lungs, tyrosine phosphorylation of beta-catenin and serine/threonine phosphorylation of Akt, glycogen synthase kinase 3beta (GSK3beta), and ERK1/2 increased significantly with peak effects at 60 min. Thus mechanical stress activation of PI3K and Src may increase lung vascular permeability through tyrosine phosphorylation, but simultaneous activation of the PI3K-Akt-GSK3beta pathway tends to limit this permeability response, possibly by preserving cellular beta-catenin.